skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physical Controls on the Macrofaunal Benthic Biomass in Barrow Canyon, Chukchi Sea
Abstract A region of exceptionally high macrofaunal benthic biomass exists in Barrow Canyon, implying a carbon export process that is locally concentrated. Here we offer an explanation for this benthic “hotspot” using shipboard data together with a set of dynamical equations. Repeat occupations of the Distributed Biological Observatory transect in Barrow Canyon reveal that when the northward flow is strong and the density front in the canyon is sharp, plumes of fluorescence and oxygen extend from the pycnocline to the seafloor in the vicinity of the hotspot. By solving the quasi‐geostrophic omega equation with an analytical flow field fashioned after the observations, we diagnose the vertical velocity in the canyon. This reveals that, as the along stream flow converges into the canyon, it drives a secondary circulation cell with strong downwelling on the cyclonic side of the northward flow. The downwelling quickly advects material from the pycnocline to the seafloor in a vertical plume analogous to those seen in the observations. The plume occurs only when the phytoplankton reside in the pycnocline, since the near‐surface vertical velocity is weak, also consistent with the observations. Using a wind‐based proxy to represent the strength of the northward flow and hence the pumping, in conjunction with a satellite‐derived phytoplankton source function, we construct a time series of carbon supply to the bottom of Barrow Canyon.  more » « less
Award ID(s):
1822334 1917469 1733564
PAR ID:
10443479
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
126
Issue:
5
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Age-progressive seamount tracks generated by lithospheric motion over a stationary mantle plume have long been used to reconstruct absolute plate motion (APM) models. However, the basis of these models requires the plumes to move significantly slower than the overriding lithosphere. When a plume interacts with a convergent or divergent plate boundary, it is often deflected within the strong local mantle flow fields associated with such regimes. Here, we examined the age progression and geometry of the Samoa hotspot track, focusing on lava flow samples dredged from the deep flanks of seamounts in order to best reconstruct when a given seamount was overlying the mantle plume (i.e., during the shield-building stage). The Samoan seamounts display an apparent local plate velocity of 7.8 cm/yr from 0 to 9 Ma, 11.1 cm/yr from 9 to 14 Ma, and 5.6 cm/yr from 14 to 24 Ma. Current fixed and mobile hotspot Pacific APM models cannot reproduce the geometry of the Samoa seamount track if a long-term fixed hotspot location, currently beneath the active Vailulu’u Seamount, is assumed. Rather, reconstruction of the eruptive locations of the Samoan seamounts using APM models indicates that the surface expression of the plume migrated ~2° northward in the Pliocene. Large-scale mantle flow beneath the Pacific Ocean Basin cannot explain this plume migration. Instead, the best explanation is that toroidal flow fields—generated by westward migration of the Tonga Trench and associated slab rollback—have deflected the conduit northward over the past 2–3 m.y. These observations provide novel constraints on the ways in which plume-trench interactions can alter hotspot track geometries. 
    more » « less
  2. Abstract Barrow Canyon in the northeast Chukchi Sea is a critical choke point where Pacific‐origin water, heat, and nutrients enter the interior Arctic. While the flow through the canyon has been monitored for more than 20 years, questions remain regarding the dynamics by which the Pacific‐origin water is fluxed offshore, as well as what drives the variability. In 2018, two high‐resolution shipboard surveys of the canyon were carried out—one in summer and one in fall—to investigate the water mass distribution and velocity structure of the outflow. During the summer survey, high percentages of Pacific water (summer water + winter water) were present seaward of the canyon, associated with strong northward outflow from the canyon and a well‐developed westward‐flowing Chukchi Slope Current (CSC). By contrast, high percentages of Pacific water were confined to the canyon proper and outer Chukchi shelf during the late‐fall survey, at which time the canyon outflow and CSC were considerably weaker. These differences can be attributed to differences in wind forcing during the time period of two surveys. A cyclone‐like circulation was present in the canyon during both surveys, which was also evident in the satellite‐derived sea surface height anomaly field. We argue that this feature corresponds to an arrested topographic Rossby wave, generated as the outflow responds to the deepening bathymetry of the canyon. By applying a self‐organizing map analysis using the satellite altimeter data from 2001 to 2020, we demonstrate that such a cyclone‐like structure is a prevailing aspect of the canyon outflow. 
    more » « less
  3. Abstract A high‐resolution regional ocean model together with moored hydrographic and velocity measurements is used to identify the pathways and mechanisms by which Pacific water, modified over the Chukchi shelf, crosses the shelf break into the Canada Basin. Most of the Pacific water flowing into the Arctic Ocean through Bering Strait enters the Canada Basin through Barrow Canyon. Strong advection allows the water to cross the shelf break and exit the shelf. Wind forcing plays little role in this process. Some of the outflowing water from Barrow Canyon flows to the east into the Beaufort Sea; however, approximately 0.4 to 0.5 Sv turns to the west forming the newly identified Chukchi Slope Current. This transport occurs at all times of year, channeling both summer and winter waters from the shelf to the Canada Basin. The model indicates that approximately 75% of this water was exposed to the mixed layer within the Chukchi Sea, while the remaining 25% was able to cross the shelf during the stratified summer before convection commences in late fall. We view the Sv of the Chukchi Slope Current as replacing Beaufort Gyre water that would have come from the east in the absence of the cross‐topography flow in Barrow Canyon. The weak eastward flow on the Beaufort slope is also consistent with the local disruption of the Beaufort Gyre by the Barrow Canyon outflow. 
    more » « less
  4. Abstract Palmer Deep Canyon is one of the biological hotspots associated with deep bathymetric features along the West Antarctic Peninsula. The upwelling of nutrient‐rich Upper Circumpolar Deep Water to the surface mixed layer in the submarine canyon has been hypothesized to drive increased phytoplankton biomass, attracting krill, penguins and other top predators to the area. However, observations in Palmer Deep Canyon lack a clearin‐situupwelling signal, laboratory experiments do not illustrate a physiological response by phytoplankton to Upper Circumpolar Deep Water, and surface residence times are too short for phytoplankton populations to reasonably respond to any locally upwelled nutrients. This suggests that local upwelling may not be the mechanism that links Palmer Deep Canyon to increased biological activity. Previous observations of isopycnal doming within the canyon suggested that a subsurface recirculating feature may be present. Here, usingin‐situmeasurements and a circulation model, we demonstrate that the presence of a recirculating eddy may contribute to the maintenance of the biological hotspot by increasing residence times at depth and retaining a distinct layer of biological particles. Neutrally buoyant particle simulations showed that residence times increase to ∼175 days at 150 m within the canyon during the austral summer.In‐situparticle scattering, flow cytometry, and water samples from within the subsurface eddy suggest that retained particles are detrital in nature. Our results suggest that this seasonal, retentive feature in Palmer Deep Canyon is important to the retention of biological material and may contribute to the maintenance of this hotspot. 
    more » « less
  5. Abstract Data from two moorings deployed at 166°W on the northern Chukchi shelf and slope from summer 2002 to fall 2004, as part of the Western Arctic Shelf‐Basin Interactions program, are analyzed to investigate the characteristics and variability of the flow in this region. The depth‐mean velocity at the outer‐shelf mooring is northeastward and bottom‐intensified, while that at the upper‐slope mooring is northwestward and surface‐intensified. This, together with results from a high resolution ocean and sea ice reanalysis, indicates that the outer‐shelf mooring sampled the seaward edge of the Chukchi Shelfbreak Jet, while the upper‐slope mooring sampled the shoreward edge of the Chukchi Slope Current. The coupled variability in velocity at both sites is related to the wind stress curl over the Chukchi Sea shelf, likely via Ekman dynamics and geostrophic set up, analogous to the dynamics of both currents closer to Barrow Canyon near 157°W. Hydrographic signals are analyzed to elucidate the origin of the water masses present at this location. It is argued that the annual appearance of Pacific‐origin warm water at the outer‐shelf (upper‐slope) mooring in late‐fall and winter originates from Herald (Barrow) Canyon some months earlier. Our results constitute the first robust evidence that the westward‐flowing Chukchi Slope Current persists this far west of Barrow Canyon. 
    more » « less