skip to main content


Title: Growing season moisture drives interannual variation in woody productivity of a temperate deciduous forest
Summary

The climate sensitivity of forest ecosystem woody productivity (ANPPstem) influences carbon cycle responses to climate change. For the first time, we combined long‐term annual growth and forest census data of a diverse temperate broadleaf deciduous forest, seeking to resolve whetherANPPstemis primarily moisture‐ or energy‐limited and whether climate sensitivity has changed in recent decades characterised by more mesic conditions and elevated CO2.

We analysed tree‐ring chronologies across 109 yr of monthly climatic variation (1901–2009) for 14 species representing 97% ofANPPstemin a 25.6 ha plot in northern Virginia, USA.

Radial growth of most species and ecosystem‐levelANPPstemresponded positively to cool, moist growing season conditions, but the same conditions in the previous May–July were associated with reduced growth. In recent decades (1980–2009), responses were more variable and, on average, weaker.

Our results indicated that woody productivity is primarily limited by current growing season moisture, as opposed to temperature or sunlight, but additional complexity in climate sensitivity may reflect the use of stored carbohydrate reserves. Overall, while such forests currently display limited moisture sensitivity, their woody productivity is likely to decline under projected hotter and potentially drier growing season conditions.

 
more » « less
NSF-PAR ID:
10443487
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
223
Issue:
3
ISSN:
0028-646X
Page Range / eLocation ID:
p. 1204-1216
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Water‐limited ecosystems are highly sensitive to not only precipitation amount, but also precipitation pattern, particularly variability in the size and timing of growing season rainfall events. Both rainfall event size and timing are expected to be altered by climate change, but the relative responses of dryland ecosystems to changes in rainfall event size versus timing have not been resolved. Here, we disentangle the effects of these different aspects of precipitation pattern on ecosystem dynamics.

    We experimentally assessed how these two aspects of rainfall variability impacted a semi‐arid grassland ecosystem by altering an ambient precipitation pattern to eliminate variability in (a) rainfall event size (all events were made the same size), (b) rainfall event timing (all events were uniformly spaced in time) and (c) both. Total precipitation amount was constant for all treatments. We measured responses of soil moisture, ecosystem carbon flux (e.g. net primary production and soil CO2flux), plant community composition and physiological responses of the dominant C4grass,Bouteloua gracilis.

    Removing variability in rainfall event size altered ecosystem dynamics more than a pattern of uniform event timing, but the largest impact occurred when variability in both were removed. Notably, eliminating variability in both event size and timing increased above‐ground net primary productivity by 23%, consistent with reduced water stress in the dominant C4grass, while also reducing seasonal variability in soil CO2flux by 35%, reflecting lower seasonal variability in soil moisture.

    Synthesis. Unique responses to different aspects of precipitation variability highlight the complexity of predicting how dryland ecosystems will be affected by climate change‐induced shifts in rainfall patterns. Our results provide novel support for the key roles of rainfall event size and timing, in addition to total precipitation amount, as determinants of ecosystem function.

     
    more » « less
  2. Abstract

    Identifying factors controlling forest productivity is critical to understanding forest‐climate change feedbacks, modelling vegetation dynamics and carbon finance schemes. However, little research has focused on productivity in regenerating tropical forests which are expanding in their fraction of global area have an order of magnitude larger carbon uptake rates relative to older forest.

    We examined above‐ground net primary productivity (ANPP) and its components (wood production and litterfall) over 10 years in forest plots that vary in successional age, soil characteristics and species composition using band dendrometers and litterfall traps in regenerating seasonally dry tropical forests in northwestern Costa Rica.

    We show that the components of ANPP are differentially driven by age and annual rainfall and that local soil variation is important. Total ANPP was explained by a combination of age, annual rainfall and soil variation. Wood production comprised 35% of ANPP on average across sites and years, and was explained by annual rainfall but not forest age. Conversely, litterfall increased with forest age and soil fertility yet was not affected by annual rainfall. In this region, edaphic variability is highly correlated with plant community composition. Thus, variation in ecosystem processes explained by soil may also be partially explained by species composition.

    These results suggest that future changes in annual rainfall can alter the secondary forest carbon sink, but this effect will be buffered by the litterfall flux which varies little among years. In determining the long‐term strength of the secondary forest carbon sink, both rainfall and forest age will be critical variables to track. We also conclude that detailed understanding of local site variation in soils and plant community may be required to accurately predict the impact of changing rainfall on forest carbon uptake.

    Synthesis. We show that in seasonally dry tropical forest, annual rainfall has a positive relationship with the growth of above‐ground woody tissues of trees and that droughts lead to significant reductions in above‐ground productivity. These results provide evidence for climate change—carbon cycle feedbacks in the seasonal tropics and highlight the value of longitudinal data on forest regeneration.

     
    more » « less
  3. Abstract

    In semiarid regions, vegetation constraints on plant growth responses to precipitation (PPT) are hypothesized to place an upper limit on net primary productivity (NPP), leading to predictions of future shifts from currently defined linear to saturatingNPPPPTrelationships as increases in both dry and wetPPTextremes occur. We experimentally tested this prediction by imposing a replicated gradient of growing seasonPPT(GSP,n = 11 levels,n = 4 replicates), ranging from the driest to wettest conditions in the 75‐yr climate record, within a semiarid grassland. We focused on responses of two key ecosystem processes: abovegroundNPP(ANPP) and soil respiration (Rs).ANPPandRsboth exhibited greater relative responses to wet vs. dryGSPextremes, with a linear relationship consistently best explaining the response of both processes toGSP. However, this responsiveness toGSPpeaked at moderate levels of extremity for both processes, and declined at the most extremeGSPlevels, suggesting that greater sensitivity ofANPPandRsto wet vs. dry conditions may diminish under increased magnitudes ofGSPextremes. Underlying these responses was rapid plant compositional change driven by increased forb production and cover asGSPtransitioned to extreme wet conditions. This compositional shift increased the magnitude ofANPPresponses to wetGSPextremes, as well as the slope and variability explained in theANPPGSPrelationship. Our findings suggest that rapid plant compositional change may act as a mediator of semiarid ecosystem responses to predicted changes inGSPextremes.

     
    more » « less
  4. Summary

    Rapid changes in climate and disturbance regimes, including droughts and hurricanes, are likely to influence tropical forests, but our understanding of the compound effects of disturbances on forest ecosystems is extremely limited. Filling this knowledge gap is necessary to elucidate the future of these ecosystems under a changing climate.

    We examined the relationship between hurricane response (damage, mortality, and resilience) and four hydraulic traits of 13 dominant woody species in a wet tropical forest subject to periodic hurricanes.

    Species with high resistance to embolisms (lowP50values) and higher safety margins () were more resistant to immediate hurricane mortality and breakage, whereas species with higher hurricane resilience (rapid post‐hurricane growth) had high capacitance andP50values and low . During 26 yr of post‐hurricane recovery, we found a decrease in community‐weighted mean values for traits associated with greater drought resistance (leaf turgor loss point,P50, ) and an increase in capacitance, which has been linked with lower drought resistance.

    Hurricane damage favors slow‐growing, drought‐tolerant species, whereas post‐hurricane high resource conditions favor acquisitive, fast‐growing but drought‐vulnerable species, increasing forest productivity at the expense of drought tolerance and leading to higher overall forest vulnerability to drought.

     
    more » « less
  5. Abstract

    Seeds provide the basis of genetic diversity in perennial grassland communities and their traits may influence ecosystem resistance to extreme drought. However, we know little about how drought effects the community functional composition of seed traits and the corresponding implications for ecosystem resistance to drought.

    We experimentally removed 66% of growing season precipitation for 4 years across five arid and semi‐arid grasslands in northern China and assessed how this multi‐year drought impacted community‐weighted means (CWMs) of seed traits, seed trait functional diversity and above‐ground net primary productivity (ANPP).

    Experimental drought had limited effects on CWM traits and the few effects that did occur varied by site and year. For three separate sites, and in different years, drought reduced seed length and phosphorus content but increased both seed and seed‐coat thickness. Additionally, drought led to increased seed functional evenness, divergence, dispersion and richness, but only in some sites, and mostly in later years following cumulative effects of water limitation. However, we observed a strong negative relationship between drought‐induced reductions in ANPP and CWMs of seed‐coat thickness, indicating that a high abundance of dominant species with thick seeds may increase ecosystem resistance to drought. Seed trait functional diversity was not significantly predictive of ANPP, providing little evidence for a diversity effect.

    Our results suggest that monitoring community composition with a focus on seed traits may provide a valuable indicator of ecosystem resistance to future droughts despite inconsistent responses of seed trait composition overall. This highlights the importance of developing a comprehensive seed and reproductive traits database for arid and semi‐arid grassland biomes.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less