Abstract Stability of eukaryotic mRNAs is associated with their codon, amino acid, and GC content. Yet, coding sequence motifs that predictably alter mRNA stability in human cells remain poorly defined. Here, we develop a massively parallel assay to measure mRNA effects of thousands of synthetic and endogenous coding sequence motifs in human cells. We identify several families of simple dipeptide repeats whose translation triggers mRNA destabilization. Rather than individual amino acids, specific combinations of bulky and positively charged amino acids are critical for the destabilizing effects of dipeptide repeats. Remarkably, dipeptide sequences that form extended β strands in silico and in vitro slowdown ribosomes and reduce mRNA levels in vivo. The resulting nascent peptide code underlies the mRNA effects of hundreds of endogenous peptide sequences in the human proteome. Our work suggests an intrinsic role for the ribosome as a selectivity filter against the synthesis of bulky and aggregation-prone peptides. 
                        more » 
                        « less   
                    
                            
                            Identification of a Golgi-localized peptide reveals a minimal Golgi-targeting motif
                        
                    
    
            Prior work has identified signal sequences and motifs that are necessary and sufficient to target proteins to specific subcellular regions and organelles such as the plasma membrane, nucleus, endoplasmic reticulum, and mitochondria. In contrast, minimal sequence motifs that are sufficient for Golgi localization remain largely elusive. In this work, we identified a 37–amino acid alternative open reading frame (altORF) within the mRNA of the centromere protein CENP-R. This altORF peptide localizes specifically to the cytoplasmic surface of the Golgi apparatus. Through mutational analysis, we identify a minimal 10–amino acid sequence and a critical cysteine residue that are necessary and sufficient for Golgi localization. Pharmacological perturbations suggest that this peptide undergoes lipid modification to promote its localization. Together, our work defines a minimal sequence that is sufficient for Golgi targeting and provide a valuable Golgi marker for live cell imaging. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2029868
- PAR ID:
- 10443551
- Editor(s):
- Munson, Mary
- Date Published:
- Journal Name:
- Molecular Biology of the Cell
- Volume:
- 33
- Issue:
- 12
- ISSN:
- 1059-1524
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Insulin is a peptide hormone that is secreted in Golgi-derived dense-core vesicles from mammalian pancreatic beta-cells in response to nutrients. InDrosophila melanogaster, three insulin-like peptides are secreted as neuropeptides from the insulin-producing cells in the brain. Peroxisomes are lipid-metabolizing organelles that engage into various membrane contact sites with other organelles. Impaired peroxisomal metabolism has been associated with beta-cell apoptosis and impaired insulin secretion. How peroxisomes contribute to insulin and neuropeptide secretion is unknown. Here we demonstrate that peroxisomes interact with the Golgi apparatus inDrosophilainsulin-producing cells. Secretion of insulin-like peptide 2 is cell-intrinsically impaired in mutants lacking the peroxisome assembly factor Pex19. Loss of peroxisomes shifts the profile of sphingolipids towards longer sphingoid bases and leads to accumulation of sphingolipids in the Golgi. We show that peroxisomes dynamically interact with the Golgi in insulin-producing cells and that Pex19 directly contributes to peroxisome-Golgi interaction via the fatty acyl-CoA reductase FAR2/waterproof in the peroxisomal membrane. We propose that this peroxisome-Pex19-Golgi axis is required to adjust Golgi membranes upon starvation by withdrawing lipids with longer side chains, thereby optimizing Golgi membrane flexibility for dense-core vesicle secretion upon refeeding.more » « less
- 
            Cellular signaling networks are modulated by multiple protein-protein interaction domains that coordinate extracellular inputs and processes to regulate cellular processes. Several of these domains recognize short linear motifs, or SLiMs, which are often highly conserved and are closely regulated. One such domain, the Src homology 3 (SH3) domain, typically recognizes proline-rich SLiMs and is one of the most abundant SLiM-binding domains in the human proteome. These domains are often described as quiteversatile, and indeed, SH3 domains can bind ligands in opposite orientations dependent on target sequence. Furthermore, recent work has identified diverse modes of binding for SH3 domains and a wide variety of sequence motifs that are recognized by various domains. Specificity is often attributed to the RT and nSrc loops near the peptide-binding cleft in this domain family, particularly for Class I binding, which is defined as RT and nSrc loop interactions with the N-terminus of the ligand. Here, we used the Src and Abl SH3 domains as a model to further investigate the role of the RT and nSrc loops in SH3 specificity. We created chimeric domains with both the RT and nSrc loop sequences swapped between these SH3 domains, and used fluorescence anisotropy assays to test how relative binding affinities were affected for Src SH3- and Abl SH3-specific ligands. We also used Alphafold–Multimer to model our SH3:peptide complexes in combination with molecular dynamics simulations. We identified a position that contributes to the nSrc loop conformation in Src SH3, the amino acid immediately following a highly conserved Trp that creates a hydrophobic pocket critical for SH3 ligand recognition. We defined this as the WX motif, where X = Trp for Src and Cys for Abl. A broad importance of this position for modulating nSrc loop conformation in SH3 domains is suggested by analyses of previously deposited SH3 structures, multiple sequence alignment of SH3 domains in the human proteome, and our biochemical and computational data of mutant Src and Abl SH3 domains. Overall, our work uses experimental approaches and structural modeling to better understand specificity determinants in SH3 domains.more » « less
- 
            Abstract Chemical fungicides have been instrumental in protecting crops from fungal diseases. However, increasing fungal resistance to many of the single‐site chemical fungicides calls for the development of new antifungal agents with novel modes of action (MoA). The sequence‐divergent cysteine‐rich antifungal defensins with multisite MoA are promising starting templates for design of novel peptide‐based fungicides. Here, we experimentally tested such a set of 17‐amino‐acid peptides containing the γ‐core motif of the antifungal plant defensin MtDef4. These designed peptides exhibited antifungal properties different from those of MtDef4. Focused analysis of a lead peptide, GMA4CG_V6, showed that it was a random coil in solution with little or no secondary structure elements. Additionally, it exhibited potent cation‐tolerant antifungal activity against the plant fungal pathogenBotrytis cinerea, the causal agent of grey mould disease in fruits and vegetables. Its multisite MoA involved localization predominantly to the plasma membrane, permeabilization of the plasma membrane, rapid internalization into the vacuole and cytoplasm, and affinity for the bioactive phosphoinositides phosphatidylinositol 3‐phosphate (PI3P), PI4P, and PI5P. The sequence motif RRRW was identified as a major determinant of the antifungal activity of this peptide. While topical spray application of GMA4CG_V6 onNicotiana benthamianaand tomato plants provided preventive and curative suppression of grey mould disease symptoms, the peptide was not internalized into plant cells. Our findings open the possibility that truncated and modified defensin‐derived peptides containing the γ‐core sequence could serve as promising candidates for further development of bio‐inspired fungicides.more » « less
- 
            Nature encodes the information required for life in two fundamental biopolymers: nucleic acids and proteins. Peptide nucleic acid (PNA), a synthetic analog comprised of nucleobases arrayed along a pseudopeptide backbone, has the ability to combine the power of nucleic acids to encode information with the versatility of amino acids to encode structure and function. Historically, PNA has been perceived as a simple nucleic acid mimic having desirable properties such as high biostability and strong affinity for complementary nucleic acids. In this feature article, we aim to adjust this perception by highlighting the ability of PNA to act as a peptide mimic and showing the largely untapped potential to encode information in the amino acid sequence. First, we provide an introduction to PNA and discuss the use of conjugation to impart tunable properties to the biopolymer. Next, we describe the integration of functional groups directly into the PNA backbone to impart specific physical properties. Lastly, we highlight the use of these integrated amino acid side chains to encode peptide-like sequences in the PNA backbone, imparting novel activity and function and demonstrating the ability of PNA to simultaneously mimic both a peptide and a nucleic acid.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    