This work proposes Dynamic Linear Epsilon-Greedy, a novel contextual multi-armed bandit algorithm that can adaptively assign personalized content to users while enabling unbiased statistical analysis. Traditional A/B testing and reinforcement learning approaches have trade-offs between empirical investigation and maximal impact on users. Our algorithm seeks to balance these objectives, allowing platforms to personalize content effectively while still gathering valuable data. Dynamic Linear Epsilon-Greedy was evaluated via simulation and an empirical study in the ASSISTments online learning platform. In simulation, Dynamic Linear Epsilon-Greedy performed comparably to existing algorithms and in ASSISTments, slightly increased students’ learning compared to A/B testing. Data collected from its recommendations allowed for the identification of qualitative interactions, which showed high and low knowledge students benefited from different content. Dynamic Linear Epsilon-Greedy holds promise as a method to balance personalization with unbiased statistical analysis. All the data collected during the simulation and empirical study are publicly available at https://osf.io/zuwf7/. 
                        more » 
                        « less   
                    
                            
                            A Bandit you can Trust.
                        
                    
    
            This work proposes Dynamic Linear Epsilon-Greedy, a novel con- textual multi-armed bandit algorithm that can adaptively assign personalized content to users while enabling unbiased statistical analysis. Traditional A/B testing and reinforcement learning ap- proaches have trade-offs between empirical investigation and max- imal impact on users. Our algorithm seeks to balance these objec- tives, allowing platforms to personalize content effectively while still gathering valuable data. Dynamic Linear Epsilon-Greedy was evaluated via simulation and an empirical study in the ASSIST- ments online learning platform. In simulation, Dynamic Linear Epsilon-Greedy performed comparably to existing algorithms and in ASSISTments, slightly increased students’ learning compared to A/B testing. Data collected from its recommendations allowed for the identification of qualitative interactions, which showed high and low knowledge students benefited from different content. Dynamic Linear Epsilon-Greedy holds promise as a method to bal- ance personalization with unbiased statistical analysis. All the data collected during the simulation and empirical study are publicly available at https://osf.io/zuwf7/. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1931523
- PAR ID:
- 10443572
- Date Published:
- Journal Name:
- Proceedings of The 31st ACM Conference On User Modeling, Adaptation And Personalization
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The best algorithm for a computational problem generally depends on the "relevant inputs," a concept that depends on the application domain and often defies formal articulation. Although there is a large literature on empirical approaches to selecting the best algorithm for a given application domain, there has been surprisingly little theoretical analysis of the problem. We model the problem of identifying a good algorithm from data as a statistical learning problem. Our framework captures several state-of-the-art empirical and theoretical approaches to the problem, and our results identify conditions under which these approaches are guaranteed to perform well. We interpret our results in the contexts of learning greedy heuristics, instance feature-based algorithm selection, and parameter tuning in machine learning.more » « less
- 
            null (Ed.)Similar content has tremendous utility in classroom and online learning environments. For example, similar content can be used to combat cheating, track students’ learning over time, and model students’ latent knowledge. These different use cases for similar content all rely on different notions of similarity, which make it difficult to determine contents’ similarities. Crowdsourcing is an effective way to identify similar content in a variety of situations by providing workers with guidelines on how to identify similar content for a particular use case. However, crowdsourced opinions are rarely homogeneous and therefore must be aggregated into what is most likely the truth. This work presents the Dynamically Weighted Majority Vote method. A novel algorithm that combines aggregating workers’ crowdsourced opinions with estimating the reliability of each worker. This method was compared to the traditional majority vote method in both a simulation study and an empirical study, in which opinions on seventh grade mathematics problems’ similarity were crowdsourced from middle school math teachers and college students. In both the simulation and the empirical study the Dynamically Weighted Majority Vote method outperformed the traditional majority vote method, suggesting that this method should be used instead of majority vote in future crowdsourcing endeavors.more » « less
- 
            Similar content has tremendous utility in classroom and online learning environments. For example, similar content can be used to combat cheating, track students’ learning over time, and model students’ latent knowledge. These different use cases for similar content all rely on different notions of similarity, which make it difficult to determine contents’ similarities. Crowdsourcing is an effective way to identify similar content in a variety of situations by providing workers with guidelines on how to identify similar content for a particular use case. However, crowdsourced opinions are rarely homogeneous and therefore must be aggregated into what is most likely the truth. This work presents the Dynamically Weighted Majority Vote method. A novel algorithm that combines aggregating workers’ crowdsourced opinions with estimating the reliability of each worker. This method was compared to the traditional majority vote method in both a simulation study and an empirical study, in which opinions on seventh grade mathematics problems’ similarity were crowdsourced from middle school math teachers and college students. In both the simulation and the empirical study the Dynamically Weighted Majority Vote method outperformed the traditional majority vote method, suggesting that this method should be used instead of majority vote in future crowdsourcing endeavors.more » « less
- 
            Ranzato, M.; Beygelzimer, A.; Liang, P.S.; Vaughan, J.W.; Dauphin, Y. (Ed.)Fairness and robustness are critical elements of Trustworthy AI that need to be addressed together. Fairness is about learning an unbiased model while robustness is about learning from corrupted data, and it is known that addressing only one of them may have an adverse affect on the other. In this work, we propose a sample selection-based algorithm for fair and robust training. To this end, we formulate a combinatorial optimization problem for the unbiased selection of samples in the presence of data corruption. Observing that solving this optimization problem is strongly NP-hard, we propose a greedy algorithm that is efficient and effective in practice. Experiments show that our method obtains fairness and robustness that are better than or comparable to the state-of-the-art technique, both on synthetic and benchmark real datasets. Moreover, unlike other fair and robust training baselines, our algorithm can be used by only modifying the sampling step in batch selection without changing the training algorithm or leveraging additional clean data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    