skip to main content


This content will become publicly available on August 14, 2024

Title: Uptake and release of perfluoroalkyl carboxylic acids (PFCAs) from macro and microplastics
Microplastics and per- and polyfluoroalkyl substances (PFAS) are two of the most notable emerging contaminants reported in the environment. Micron and nanoscale plastics possess a high surface area-to-volume ratio, which could increase their potential to adsorb pollutants such as PFAS. One of the most concerning sub-classes of PFAS are the perfluoroalkyl carboxylic acids (PFCAs). PFCAs are often studied in the same context as other environmental contaminants, but their amphiphilic properties are often overlooked in determining their fate in the environment. This lack of consideration has resulted in a diminished understanding of the environmental mobility of PFCAs, as well as their interactions with environmental media. Here, we investigate the interaction of PFCAs with polyethylene microplastics, and identify the role of environmental weathering in modifying the nature of interactions. Through a series of adsorption–desorption experiments, we delineate the role of the fluoroalkyl tail in the binding of PFCAs to microplastics. As the number of carbon atoms in the fluoroalkyl chain increases, there is a corresponding increase in the adsorption of PFCAs onto microplastics. This relationship can become modified by environmental weathering, where the PFCAs are released from the macro and microplastic surface after exposure to simulated sunlight. This study identifies the fundamental relationship between PFCAs and plastic pollutants, where they can mutually impact their thermodynamic and transport properties.  more » « less
Award ID(s):
2032497
NSF-PAR ID:
10443664
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Processes & Impacts
ISSN:
2050-7887
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As concerns rise about the health risks posed by per- and polyfluoroalkyl substances (PFAS) in the environment, there is a need to understand how these pollutants accumulate at environmental interfaces. Untangling the details of molecular adsorption, particularly when there are potential interactions with other molecules in environmental systems, can obscure the ability to focus on a particular contaminant with molecular specificity. Often adsorption studies of environmental interfaces require a reductionist approach, where laboratory experiments may not be fully tractable to environmental systems. In this work, we study polyfluorinated dodecylphosphonic acid (F21-DDPA) at the aqueous surfaces of distilled water (the most reduced “environmental” surface) and river water to explore the use of vibrational sum-frequency (VSF) spectroscopy as an experimental probe of fluorinated contaminants at natural environmental surfaces. We demonstrate how VSF spectroscopy offers advantages over nonspecific surface tension measurements when measuring PFAS adsorption isotherms at river water surfaces. VSF spectra of the C–F stretching region selectively probe the presence of F21-DDPA and can be used to extract meaningful structural insights and calculate surface concentrations, even at the complex river water surface. This study highlights the potential for VSF spectroscopy to be developed as a probe of fluorinated contaminants at natural environmental interfaces. 
    more » « less
  2. Per- and polyfluoroalkyl substances (PFAS) have been extensively utilized in practical applications that include surfactants, lubricants, and firefighting foams due to their thermal stability and chemical inertness. Recent studies have revealed that PFAS were detected in groundwater and even drinking water systems which can cause severe environmental and health issues. While adsorbents with a large specific surface area have demonstrated effective removal of PFAS from water, their capability in desorbing the retained PFAS has been often neglected despite its critical role in regeneration for reuse. Further, they have demonstrated a relatively lower adsorption capacity for PFAS with a short fluoroalkyl chain length. To overcome these limitations, electric field-aided adsorption has been explored. In this work, reversible adsorption and desorption of PFAS dissolved in water upon alternating voltage is reported. An inexpensive graphite adsorbent is fabricated by using a simple press resulting in a mesoporous structure with a BET surface area of 132.9 ± 10.0 m 2 g −1 . Electric field-aided adsorption and desorption experiments are conducted by using a custom-made cell consisting of two graphite electrodes placed in parallel in a polydimethylsiloxane container. Unlike the conventional sorption process, a graphite electrode exhibits a higher adsorption capacity for PFAS with a short fluoroalkyl chain (perfluoropentanoic acid, PFPA) in comparison to that with a long fluoroalkyl chain (perfluorooctanoic acid, PFOA). Upon alternating the voltage to a negative value, the retained PFPA or PFOA is released into the surrounding water. Finally, we engineered a device module mounted on a gravity-assisted apparatus to demonstrate electrosorption of PFAS and collection of high purity water. 
    more » « less
  3. Surface adsorption of two commonly detected emerging contaminants, amlodipine (AMP) and carbamazepine (CBZ), onto model colloidal microplastics, natural organic matter (NOM), and fullerene nanomaterials have been investigated. It is found that AMP accumulation at these colloidal–aqueous interfaces is markedly higher than that of CBZ. Measurements of surface excess and particle zeta potential, along with pH-dependent adsorption studies, reveal a distinct influence of colloidal functional group on the adsorption properties of these pharmaceuticals. AMP shows a clear preference for a surface containing carboxylic group compared to an amine modified surface. CBZ, in contrast, exhibit a pH-dependent surface proclivity for both of these microparticles. The type of interactions and molecular differences with respect to structural rigidity and charge properties explain these observed behaviors. In this work, we also demonstrate a facile approach in fabricating uniform microspheres coated with NOM and C 60 nanoclusters. Subsequent binding studies on these surfaces show considerable adsorption on the NOM surface but a minimal uptake of CBZ by C 60 . Adsorption induced colloidal aggregation was not observed. These findings map out the extent of contaminant removal by colloids of different surface properties available in the aquatic environment. The methodology developed for the adsorption study also opens up the possibility for further investigations into colloidal–contaminant interactions. 
    more » « less
  4. Nontarget analysis using liquid chromatography–high resolution mass spectrometry (LC–HRMS) is a valuable approach in characterizing for contaminants of emerging concern (CECs) in the environment. However, identification of these analytes can be quite costly or taxing without proper analytical standards. To circumvent this problem we utilize Quantitative structure-retention relationships (QSRR) models to predict elution order and retention times. Properties calculated from density functional theory (DFT) and the conductor-like screening model for real solvents (COSMO-RS) theory are used to produce our QSRR models, which can be calculated for virtually any analyte. We show that this methodology has been successful in identification of per- /poly-fluoroalkyl substances (PFAS) and other contaminants. Nontarget analysis using liquid chromatography– high resolution mass spectrometry (LC–HRMS) is a valuable approach in characterizing for contaminants of emerging concern (CECs) in the environment. However, identification of these analytes can be quite costly or taxing without proper analytical standards. To circumvent this problem we utilize Quantitative structureretention relationships (QSRR) models to predict elution order and retention times. Properties calculated from density functional theory (DFT) and the conductor-like screening model for real solvents (COSMO-RS) theory are used to produce our QSRR models, which can be calculated for virtually any analyte. We show that this methodology has been 
    more » « less
  5. Urbanization poses increasing threats to aquatic ecosystems, including increased chemical loading. Of relatively recent concern is the potential of urban stormwater runoff to facilitate the spread of microplastics (MPs), including tire wear particles. Previous studies have demonstrated the effectiveness of bioretention treatment systems in treating runoff, thereby reducing chemical loading into surface waters and preventing acutely lethal and sublethal effects to aquatic organisms. In this study, we aimed to determine the effectiveness and longevity of bioretention soil media (BSM) at various infiltration depths, including the shallower depth currently required by the Washington Department of Ecology (18”). Experimental columns containing three different BSM depths were dosed with roadway runoff at an accelerated rate to simulate nine water years in approximately 30 calendar months. The chemical and biological effectiveness of the columns in treating runoff was assessed by analyzing influent/effluent chemistry and characterizing the health of juvenile coho salmon (Oncorhynchus kisutch). Bioretention treatment efficiently removed copper, zinc, total PAHs, and total suspended solids (> 70% removal). Influent stormwater runoff was acutely lethal to juvenile coho salmon (88, 90, 100, and 56.3% mortality in four exposures across the nine accelerated years). However, bioretention treatment was protective of coho, altogether preventing mortality for all treatment depths in three exposures and all but one depth in the last exposure, likely due to overflow when influent flow exceeded the ponding capacity of some of the columns. This study is ongoing and will continue to assess bioretention effectiveness through 10 accelerated years. Future research should consider the ability of bioretention systems to remove MPs and associated pollutants in runoff and explore the fate of MP-contaminant complexes in bioretention systems. Although contaminants themselves, MPs can also act as vectors of other contaminants of concern in aquatic ecosystems, including antibiotic resistance genes (ARGs). Contaminants co-occurring in runoff (e.g., heavy metals) can stimulate the selection or amplification of these ARGs. If left untreated, runoff carrying ARGs to surface waters could increase resistance in environmental bacteria and risks to human health. 
    more » « less