Subwavelength resonant lattices offer a wide range of fascinating spectral phenomena under broadside illumination. The resonance mechanism relies on the generation of lateral Bloch modes that are phase matched to evanescent diffraction orders. The spectral properties and the total number of resonance states are governed by the structure of leaky modes and the mode count. This study investigates the effect of interface modifications on the band dynamics and bound-state transitions in guided-mode resonant lattices. We provide photonic lattices comprising rectangular Si3N4 rods with a liquid film with an adjustable boundary. The band structures and band flips are examined through numerical simulations using the rigorous coupled-wave analysis (RCWA) method and analyzing the zero-order spectral reflectance as a function of the incident angle. The band structures and band flips are examined through numerical simulations, and the influences of the refractive index and the thickness of the oil layer on the band dynamics are investigated. The results reveal distinct resonance linewidths corresponding to different refractive indices of the oil layer. Furthermore, the effect of the oil thickness on the band dynamics is explored, demonstrating precise control over the number of propagating modes within the lattice structure. Theoretical simulations and experimental results are presented for a subwavelength silicon-nitride lattice combined with a liquid film featuring an adjustable boundary. The presence of a relatively thick liquid waveguiding region enables the emergence of additional modes, including the first four transverse-electric (TE) leaky modes, which produce observable resonance signatures. Through experimental manipulation of the basic lattice’s duty cycle, the four bands undergo quantifiable band transitions and closures. The experimental results obtained within the 1400–1600 nm spectral range exhibit reasonable agreement with the numerical analysis. These findings underscore the significant role played by the interface in shaping the band dynamics of the lattice structure, providing valuable insights into the design and optimization of photonic lattices with adjustable interfaces.
more »
« less
Multimode experimental band dynamics of resonant nanophotonic lattices
Subwavelength resonant lattices provide a host of interesting spectral expressions on broadside illumination. The resonance mechanism is based on generation of lateral Bloch modes phase matched to evanescent diffraction orders. The leaky mode structure and mode count determine the spectra and the number of resonance states. Here, we study band flips and bound-state transitions in guided-mode resonant structures supporting multiple resonant modes. We present theoretical simulations and experimental results for a subwavelength silicon-nitride lattice integrated with a liquid film with adjustable boundary. The relatively thick liquid waveguiding region supports additional modes such that the first four transverse-electric (TE) leaky modes are present and generate observable resonance signatures. By varying the duty cycle of the basic lattice in experiment, the 4 bands undergo band transitions and band closures as quantified herein. The experimental results taken in the 1400-1600 nm spectral region agree reasonably well with numerical analysis.
more »
« less
- Award ID(s):
- 1809143
- PAR ID:
- 10443851
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 31
- Issue:
- 18
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 29504
- Size(s):
- Article No. 29504
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Adibi, Ali; Lin, Shawn-Yu; Scherer, Axel (Ed.)Periodic optical lattices consisting of isolated-particle arrays in vacuum are treated with rigorous electromagnetics. These structures possess a wealth of interesting properties including perfect reflection across small or large spectral bandwidths depending on the choice of materials and design parameters. Pertinent spectral expressions have been observed theoretically and experimentally via one-dimensional (1D) and two-dimensional (2D) structures commonly known as resonant gratings, metamaterials, and metasurfaces. The physical cause of perfect reflection and related properties is guided-mode resonance mediated by lateral Bloch modes excited by evanescent diffraction orders in the subwavelength regime. Here, we review recent results on differentiation of local Mie resonance and guided-mode lattice resonance in causing resonant reflection by periodic particle assemblies. We treat a classic 2D periodic array consisting of dielectric spheres. To disable Mie resonance, we apply antireflection (AR) coatings to the spheres. Reflectance maps for coated and uncoated spheres demonstrate that perfect reflection persists in both cases. We find that the Mie scattering efficiency of an AR-coated sphere is greatly diminished. Additionally, in a 1D cylindrical rod-type lattice, we investigate and compare local field profiles in periodic assemblies and in the constituent isolated particles. In general, the lattice and particle resonance wavelengths differ. When the lateral leaky-mode field profiles approach the isolated-particle Mie field profiles, the resonance locus tends towards the Mie resonance wavelength. This correspondence is referred to as Mie modal memory. These fundamentals may help distinguish Mie effects and leaky-mode lattice effects in generating the observed spectra in this class of optical devices while elucidating the basic resonance properties across the entire spectral domain.more » « less
-
Resonant periodic nanostructures provide perfect reflection across small or large spectral bandwidths depending on the choice of materials and design parameters. This effect has been known for decades, observed theoretically and experimentally via one-dimensional and two-dimensional structures commonly known as resonant gratings, metamaterials, and metasurfaces. The physical cause of this extraordinary phenomenon is guided-mode resonance mediated by lateral Bloch modes excited by evanescent diffraction orders in the subwavelength regime. In recent years, hundreds of papers have declared Fabry-Perot or Mie resonance to be the basis of the perfect reflection possessed by periodic metasurfaces. Treating a simple one-dimensional cylindrical-rod lattice, here we show clearly and unambiguously that Mie resonance does not cause perfect reflection. In fact, the spectral placement of the Bloch-mode-mediated zero-order reflectance is primarily controlled by the lattice period by way of its direct effect on the homogenized effective-medium refractive index of the lattice. In general, perfect reflection appears away from Mie resonance. However, when the lateral leaky-mode field profiles approach the isolated-particle Mie field profiles, the resonance locus tends towards the Mie resonance wavelength. The fact that the lattice fields“remember” the isolated particle fields is referred here as“Mie modal memory.” On erasure of the Mie memory by an index-matched sublayer, we show that perfect reflection survives with the resonance locus approaching the homogenized effective-medium waveguide locus. The results presented here will aid in clarifying the physical basis of general resonant photonic lattices.more » « less
-
Resonant periodic nanostructures provide perfect reflection across small or large spectral bandwidths depending on the choice of materials and design parameters. This effect has been known for decades, observed theoretically and experimentally via one-dimensional and two-dimensional structures commonly known as resonant gratings, metamaterials, and metasurfaces. The physical cause of this extraordinary phenomenon is guided-mode resonance mediated by lateral Bloch modes excited by evanescent diffraction orders in the subwavelength regime. In recent years, hundreds of papers have declared Fabry-Perot or Mie resonance to be basis of the perfect reflection possessed by periodic metasurfaces. Treating a simple one-dimensional cylindrical-rod lattice, here we show clearly and unambiguously that Mie resonance does not cause perfect reflection. In fact, the spectral placement of the Bloch-mode-mediated zero-order reflectance is primarily controlled by the lattice period by way of its direct effect on the homogenized effective-medium refractive index of the lattice. In general, perfect reflection appears away from Mie resonance. However, when the lateral leaky-mode field profiles approach the isolated-particle Mie field profiles, the resonance locus tends towards the Mie resonance wavelength. The fact that the lattice fields remember the isolated particle fields is referred here as Mie modal memory. On erasure of the Mie memory by an index-matched sublayer, we show that perfect reflection survives with the resonance locus approaching the homogenized effective-medium waveguide locus. The results presented here will aid in clarifying the physical basis of general resonant photonic lattices.more » « less
-
Perfect reflection by dielectric subwavelength particle arrays: causes, implications, and technologyGarcía-Blanco, Sonia M.; Cheben, Pavel (Ed.)Periodic arrays of resonant dielectric nano- or microstructures provide perfect reflection across spectral bands whose extent is controllable by design. At resonance, the array yields this result even in a single subwavelength layer fashioned as a membrane or residing on a substrate. The resonance effect, known as guided-mode resonance, is basic to modulated films that are periodic in one dimension (1D) or in two dimensions (2D). It has been known for 40 years that these remarkable effects arise as incident light couples to leaky Bloch-type waveguide modes that propagate laterally while radiating energy. Perfect reflection by periodic lattices derives from the particle assembly and not from constituent particle resonance. We show that perfect reflection is independent of lattice particle shape in the sense that it arises for all particle shapes. The resonance wavelength of the Bloch-mode-mediated zero-order reflectance is primarily controlled by the period for a given lattice. This is because the period has direct, dominant impact on the homogenized effective-medium refractive index of the lattice that controls the effective mode index experienced by the mode generating the resonance. In recent years, the field of metamaterials has blossomed with a flood of attendant publications. A significant fraction of this output is focused on reflectors with claims that local Fabry-Perot or Mie resonance causes perfect reflection with the leaky Bloch-mode viewpoint ignored. In this paper, we advance key points showing the essentiality of lateral leaky Bloch modes while laying bare the shortcomings of the local mode explanations. The state of attendant technology with related applications is summarized. The take-home message is that it is the assembly of particles that delivers all the important effects including perfect reflection.more » « less