skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MIDA‐ and TIDA‐Boronates Stabilize α‐Radicals Through B−N Hyperconjugation
Abstract Multifunctional organoboron compounds increasingly enable the simple generation of complex, Csp3‐rich small molecules. The ability of boron‐containing functional groups to modify the reactivity of α‐radicals has also enabled a myriad of chemical reactions. Boronic esters with vacant p‐orbitals have a significant stabilizing effect on α‐radicals due to delocalization of spin density into the empty orbital. The effect of coordinatively saturated derivatives, such as N‐methyliminodiacetic acid (MIDA) boronates and counterparts, remains less clear. Herein, we demonstrate that coordinatively saturated MIDA and TIDA boronates stabilize secondary alkyl α‐radicals via σB‐Nhyperconjugation in a manner that allows site‐selective C−H bromination. DFT calculated radical stabilization energies and spin density maps as well as LED NMR kinetic analysis of photochemical bromination rates of different boronic esters further these findings. This work clarifies that the α‐radical stabilizing effect of boronic esters does not only proceed via delocalization of radical character into vacant boron p‐orbitals, but that hyperconjugation of tetrahedral boron‐containing functional groups and their ligand electron delocalizing ability also play a critical role. These findings establish boron ligands as a useful dial for tuning reactivity at the α‐carbon.  more » « less
Award ID(s):
1955838
PAR ID:
10443924
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
40
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have developed a convergent method for the synthesis of allylic alcohols that involves a reductive coupling of terminal alkynes with α-chloro boronic esters. The new method affords allylic alcohols with excellent regioselectivity (anti-Markovnikov) and an E/Z ratio greater than 200:1. The reaction can be performed in the presence of a wide range of functional groups and has a substrate scope that complements the stoichiometric alkenylation of α-chloro boronic esters performed using alkenyl lithium and Grignard reagents. The transformation is stereospecific and allows for the robust and highly selective synthesis of chiral allylic alcohols. Our studies support a mechanism that involves hydrocupration of the alkyne and cross-coupling of the alkenyl copper intermediate with α-chloro boronic esters. Experimental evidence excludes a radical mechanism of the cross-coupling step and is consistent with the formation of a boron-ate intermediate and a 1,2-metalate shift. 
    more » « less
  2. α-Branched amines are fundamental building blocks in a variety of natural products and pharmaceuticals. Herein is reported a unique cascade reaction that enables the preparation of α-branched amines bearing aryl or alkyl groups at the β- or γ-positions. The cascade is initiated by reduction of redox active esters to alkyl radicals. The resulting alkyl radicals are trapped by styrene derivatives, leading to benzylic radicals. The persistent 2-azaallyl radicals and benzylic radicals are proposed to undergo a radical–radical coupling leading to functionalized amine products. Evidence is provided that the role of the nickel catalyst is to promote formation of the alkyl radical from the redox active ester and not promote the C–C bond formation. The synthetic method introduced herein tolerates a variety of imines and redox active esters, allowing for efficient construction of amine building blocks. 
    more » « less
  3. null (Ed.)
    Abstract This Account describes work by our research group that highlights opportunities to utilize organoboron molecules to direct chemical reactivity in the organic solid state. Specifically, we convey a previously unexplored use of hydrogen bonding of boronic acids and boron coordination in boronic esters to achieve [2+2]-photocycloadditions in crystalline solids. Organoboron molecules act as templates or ‘shepherds’ to organize alkenes in a suitable geometry to undergo regio- and stereoselective [2+2]-photocycloadditions in quantitative yields. We also provide a selection of publications that served as an inspiration for our strategies and offer challenges and opportunities for future developments of boron in the field of materials and solid-state chemistry. 1 Introduction 1.1 Template Strategy for [2+2]-Photocycloadditions in the Solid State 2 Boronic Acids as Templates for [2+2]-Photocycloadditions in the Solid State 2.1 Supramolecular Catalysis of [2+2]-Photocycloadditions in the Solid State Using Boronic Acids 3 Boronic Esters as Templates for [2+2]-Photocycloadditions in the Solid State 3.1 Application of Photoproducts: Separation of Thiophene from Benzene through Crystallization 3.2 Crystal Reactivity of B←N-Bonded Adducts: The Case of Styryl­thiophenes 4 Conclusions and Perspectives 
    more » « less
  4. The discovery of singular organic radical ligands is a formidable challenge due to high reactivity arising from the unpaired electron. Matching radical ligands with metal ions to engender magnetic coupling is crucial for eliciting preeminent physical properties such as conductivity and magnetism that are crucial for future technologies. The metal-radical approach is especially important for the lanthanide ions exhibiting deeply buried 4f-orbitals. The radicals must possess a high spin density on the donor atoms to promote strong coupling. Combining diamagnetic 89 Y ( I = 1/2) with organic radicals allows for invaluable insight into the electronic structure and spin-density distribution. This approach is hitherto underutilized, possibly owing to the challenging synthesis and purification of such molecules. Herein, evidence of an unprecedented bisbenzimidazole radical anion (Bbim 3− ˙) along with its metalation in the form of an yttrium complex, [K(crypt-222)][(Cp* 2 Y) 2 (μ-Bbim˙)] is provided. Access of Bbim 3− ˙ was feasible through double-coordination to the Lewis acidic metal ion and subsequent one-electron reduction, which is remarkable as Bbim 2− was explicitly stated to be redox-inactive in closed-shell complexes. Two molecules containing Bbim 2− (1) and Bbim 3− ˙ (2), respectively, were thoroughly investigated by X-ray crystallography, NMR and UV/Vis spectroscopy. Electrochemical studies unfolded a quasi-reversible feature and emphasize the role of the metal centre for the Bbim redox-activity as neither the free ligand nor the Bbim 2− complex led to analogous CV results. Excitingly, a strong delocalization of the electron density through the Bbim 3− ˙ ligand was revealed via temperature-dependent EPR spectroscopy and confirmed through DFT calculations and magnetometry, rendering Bbim 3− ˙ an ideal candidate for single-molecule magnet design. 
    more » « less
  5. Abstract Hydroalkylation of alkynes is a powerful method for alkene synthesis. However, regioselectivity has been difficult to achieve in transformations of internal alkynes hindering applications in the synthesis of trisubstituted alkenes. To overcome these limitations, we explored using boryl groups as versatile directing groups that can control the regioselectivity of the hydroalkylation and subsequently be replaced in a cross‐coupling reaction. The result of our exploration is a nickel‐catalyzed hydroalkylation of alkynyl boronamides that provides access to a wide range of trisubstituted alkenes with high regio‐ and diastereoselectivity. The reaction can be accomplished with a variety of coupling partners, including primary and secondary alkyl iodides, α‐bromo esters, α‐chloro phthalimides, and α‐chloro boronic esters. Preliminary studies of the reaction mechanism provide evidence for the hydrometalation mechanism and the formation of alkyl radical intermediates. 
    more » « less