Globally, glaciers are shrinking in response to climate change, with implications for global sea level rise as well as downstream ecosystems and water resources. Sliding at the ice-bed interface (basal motion) provides a mechanism for glaciers to respond rapidly to climate change. While the short-term dynamics of glacier basal motion (< 10 years) have received substantial attention, little is known about how basal motion and its sensitivity to subglacial hydrology changes over long (> 50 year) timescales – this knowledge is required for accurate prediction of future glacier change. We compare historical data with modern estimates from field-collected and remotely-sensed data at Athabasca Glacier and show that, between 1961 and 2019, the glacier thinned by 51 meter ( - 18 %). However, a concurrent increase in surface slope results in minimal change in the average driving stress (-10 kilopascal, - 7%). These geometric changes coincide with a uniform surface slow down of surface velocity (-15 meter a-1, -45%). Historical observations and simplified ice modeling suggest that declining basal motion accounts for most of this slow down (63 % at a minimum). A decline in basal motion can be explained by increasing basal friction resulting from geometric change in addition to increasing meltwater flux through an efficient subglacial hydrologic system. There is some evidence that changes in basal motion in the overdeepened reach are responsible for slowing basal motion several km up-glacier. These results highlight the need to include time-varying dynamics of basal motion in glacier models and analyses. These findings suggest declining basal motion may reduce the flux of ice to lower elevations, helping to mitigate glacier mass loss in a warming climate. 
                        more » 
                        « less   
                    
                            
                            Declining Basal Motion Dominates the Long‐Term Slowing of Athabasca Glacier, Canada
                        
                    
    
            Abstract Globally, glaciers are shrinking in response to climate change, with implications for global sea level rise as well as downstream ecosystems and water resources. Sliding at the ice‐bed interface (basal motion) provides a mechanism for glaciers to respond rapidly to climate change. While the short‐term dynamics of glacier basal motion (<10 years) have received substantial attention, little is known about how basal motion and its sensitivity to subglacial hydrology changes over long (>50 year) timescales—this knowledge is required for accurate prediction of future glacier change. We compare historical data with modern estimates from field and satellite data at Athabasca Glacier and show that the glacier thinned by 60 m (−21%) over 1961–2020. However, a concurrent increase in surface slope results in minimal change in the average driving stress (−6 kPa and −4%). These geometric changes coincide with relatively uniform slowing (−15 m a−1and −45%). Simplified ice modeling suggests that declining basal motion accounts for most of this slow down (91% on average and 46% at minimum). A decline in basal motion can be explained by increasing basal friction resulting from geometric change in addition to increasing meltwater flux through a more efficient subglacial hydrologic system. These results highlight the need to include time‐varying dynamics of basal motion in glacier models and analyses. If these findings are generalizable, they suggest that declining basal motion reduces the flux of ice to lower elevations, helping to mitigate glacier mass loss in a warming climate. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10443981
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 127
- Issue:
- 10
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Understanding the dynamic response of glaciers to climate change is vital for assessing water resources and hazards, and subglacial hydrology is a key player in glacier systems. Traditional observations of subglacial hydrology are spatially and temporally limited, but recent seismic deployments on and around glaciers show the potential for comprehensive observation of glacial hydrologic systems. We present results from a high‐density seismic deployment spanning the surface of Lemon Creek Glacier, Alaska. Our study coincided with a marginal lake drainage event, which served as a natural experiment for seismic detection of changes in subglacial hydrology. We observed glaciohydraulic tremor across the surface of the glacier that was generated by the subglacial hydrologic system. During the lake drainage, the relative changes in seismic tremor power and water flux are consistent with pressurization of the subglacial system of only the upper part of the glacier. This event was not accompanied by a significant increase in glacier velocity; either some threshold necessary for rapid basal motion was not attained, or, plausibly, the geometry of Lemon Creek Glacier inhibited speedup. This pressurization event would have likely gone undetected without seismic observations, demonstrating the power of cryoseismology in testing assumptions about and mapping the spatial extent of subglacial pressurization.more » « less
- 
            Abstract Sediment erosion, transport, and deposition by glaciers and ice sheets play crucial roles in shaping landscapes, provide important nutrients to downstream ecosystems, and preserve key indicators of past climate conditions in the geologic record. While previous work has quantified sediment fluxes from subglacial meltwater, we also observe sediment entrained within basal ice, transported by the flow of the glacier itself. However, the formation and evolution of these debris‐rich ice layers remains poorly understood and rarely represented in landscape evolution models. Here, we identify a characteristic sequence of basal ice layers at Mendenhall Glacier, Alaska. We develop a numerical model of frozen fringe and regelation processes that describes the co‐evolution of this sequence and explore the sensitivity of the model to key properties of the subglacial sedimentary system, using the Instructed Glacier Model to parameterize ice dynamics. Then, we run numerical simulations over the spatial extent of Mendenhall Glacier, showing that the sediment transport model can predict the observed basal ice stratigraphy at the glacier's terminus. From the model results, we estimate basal ice layers transport between 23,300 and 39,800 of sediment, mostly entrained in the lowermost ice layers nearest to the bed, maximized by high effective pressures and slow, convergent flow fields. Overall, our results highlight the role of basal sediment entrainment in delivering eroded material to the glacier terminus and indicate that this process should not be ignored in broader models of landscape evolution.more » « less
- 
            Abstract The time-evolution of glacier basal motion remains poorly constrained, despite its importance in understanding the response of glaciers to climate warming. Athabasca Glacier provides an ideal site for observing changes in basal motion over long timescales. Studies from the 1960s provide an in situ baseline dataset constraining ice deformation and basal motion. We use two complementary numerical flow models to investigate changes along a well-studied transverse profile and throughout a larger study area. A cross-sectional flow model allows us to calculate transverse englacial velocity fields to simulate modern and historical conditions. We subsequently use a 3-D numerical ice flow model, Icepack, to estimate changes in basal friction by inverting known surface velocities. Our results reproduce observed velocities well using standard values for flow parameters. They show that basal motion declined significantly (30–40%) and this constitutes the majority (50–80%) of the observed decrease in surface velocities. At the same time, basal resistive stress has remained nearly constant and now balances a much larger fraction of the driving stress. The decline in basal motion over multiple decades of climate warming could serve as a stabilizing feedback mechanism, slowing ice transport to lower elevations, and therefore moderating future mass loss rates.more » « less
- 
            Abstract Increasing ice flux from glaciers retreating over deepening (retrograde) bed topography has been implicated in the recent acceleration of mass loss from the Greenland and Antarctic ice sheets. We show in observations that some glaciers have remained at peaks in bed topography without retreating despite enduring significant changes in climate. Observations also indicate that some glaciers which persist at bed peaks undergo sudden retreat years or decades after the onset of local ocean or atmospheric warming. Using model simulations, we show that persistence of a glacier at a bed peak is caused by ice slowing as it flows up a reverse-sloping bed to the peak. Persistence at bed peaks may lead to two very different future behaviors for a glacier: one where it persists at a bed peak indefinitely, and another where it retreats from the bed peak after potentially long delays following climate forcing. However, it is nearly impossible to distinguish which of these two future behaviors will occur from current observations. We conclude that inferring glacier stability from observations of persistence obscures our true commitment to future sea-level rise under climate change. We recommend that further research is needed on seemingly stable glaciers to determine their likely future.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
