skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mantle Flow Pattern Associated With the Patagonian Slab Window Determined From Azimuthal Anisotropy
Abstract Geological processes in Southern Patagonia are affected by the Patagonian slab window, formed by the subduction of the Chile Ridge and subsequent northward migration of the Chile Triple Junction. Using shear wave splitting analysis, we observe strong splitting of up to 2.5 s with an E‐W fast direction just south of the triple junction and the edge of the subducting Nazca slab. This region of strong anisotropy is coincident with low uppermost mantle shear velocities and an absence of mantle lithosphere, indicating that the mantle flow occurs in a warm, low‐viscosity, 200–300 km wide shallow mantle channel just to the south of the Nazca slab. The region of flow corresponds to a volcanic gap caused by depleted mantle compositions and absence of slab‐derived water. In most of Patagonia to the south of this channel, splitting fast directions trend NE‐SW consistent with large‐scale asthenospheric flow.  more » « less
Award ID(s):
1714154
PAR ID:
10443985
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Subduction of the very young (<15 Myr old) oceanic lithosphere of the Nazca plate in central to southern Colombia is observationally related to an unusually high and unusually variable amount of intermediate (>50 km) depth seismicity. From 2010 through 2019 89% of central and southern Colombia’s 11,466 intermediate depth events occurred between 3.5°N and 5.5°N, highlighting these unusual characteristics of the young slab. In addition, morphologic complexity and possible tears characterize the Nazca slab in Colombia and complicate mantle flow in the region. Prior SKS-phase shear-wave splitting results indicate sub-slab anisotropy is dominated by plate motion parallel-to-subparallel orientations in the region, suggesting the young slab has entrained a relatively thick portion of the sub-slab mantle. These observations suggest the subduction of young lithosphere has significant effects on both the overlying and underlying asthenosphere in the Colombia subduction zone. Here we use more than 10 years of data to calculate receiver functions for the Red Sismológica Nacional de Colombia’s network of broadband seismometers. These receiver functions allow us to tie these prior observations of the Colombia subduction zone to distinct, structural features of the slab. We find that the region of high seismicity corresponds to a low seismic velocity feature along the top of the subducting plate between 3.5°N and 5.5°N that is not present to the south. Moderately elevated P-wave velocity to S-wave velocity ratios are also observed within the slab in the north. This feature likely represents hydrated slab mantle and/or uneclogitized oceanic crust extending to a deeper depth in the north of the region which may provide fluids to drive slab seismicity. We further find evidence for a thick layer of material along the slab’s lithosphere-asthenosphere boundary characterized by spatially variable anisotropy. This feature likely represents entrained asthenosphere at the base of the plate sheared by both the overlying plate and complex flow related to proposed slab tears just north and south of the study region. These observations highlight how structural observations provide key contextual constraints on short-term (seismogenic) and long-term (anisotropic fabric) dynamic processes in the Colombia subduction zone. Plain-language Summary The Nazca oceanic plate is very young (<15 million years old) where it is pulled or subducted beneath the South America plate in central and southern Colombia. Earthquakes occurring in the subducted Nazca plate at depths greater than 50 km are nearly 9x more common in central Colombia than in southern Colombia. The subducted Nazca plate also has a complex shape in this region and may have been torn both in northern Colombia and to the south near the Colombia-Ecuador border. The slow flow of mantle rock beneath the subducted plate is believed to be affected by this and earlier studies have inferred this flow is mostly in the same direction as the subducting plate's motion. We have used 10+ years of data to calculate receiver functions, which can detect changes in the velocity of seismic waves at the top and bottom of the subducted plate to investigate these features. We found that the Nazca plate is either hydrated or has rocks with lower seismic velocities at its top in the central part of Colombia where earthquakes are common. We also find that a thick layer of mantle rock at the base of the subducted plate has been sheared. 
    more » « less
  2. Abstract Shear wave splitting is often assumed to be caused by mantle flow or preexisting lithospheric fabrics. We present 2,389 new SKS shear wave splitting observations from 384 broadband stations deployed in Alaska from January 2010 to August 2017. In Alaska, splitting appears to be controlled by the absolute plate motion (APM) of the North American and Pacific plates, the interaction between the two plates, and the geometry of the subducting Pacific‐Yakutat plate. Outside of the subduction zone's influence, the fast directions in northern Alaska parallel the North American APM direction. Fast directions near the Queen Charlotte‐Fairweather transform margin are parallel to the faults and are likely caused by the strike‐slip deformation extending throughout the lithosphere. In the mantle wedge, fast directions are oriented along the strike of the slab with large splitting times and are caused by along‐strike flow in the mantle wedge as the slab provides a barrier to flow. South of the Alaska Peninsula, the fast directions are parallel to the trench regardless of sea floor fabric, indicating along strike flow under the Pacific plate. Under the Kenai Peninsula, the complex flat slab geometry may cause subslab flow to be parallel to Pacific APM direction or to the North America‐Pacific relative motion. 
    more » « less
  3. Abstract To investigate the effects of a slab edge and varying slab geometry on the mantle flow systems beneath south central Alaska, a total of 971 pairs of teleseismic shear wave (SKS, SKKS, and PKS) and 65 pairs of local S wave splitting parameters (fast orientations and splitting times) are measured using data from the USArray and other networks. The Pacific‐Yakutat slab edge separates two regions with different characteristics of the splitting measurements. The area to the west of the slab edge has greater splitting times and mostly trench parallel fast orientations, and the area to the east is dominated by smaller splitting times and spatially varying fast orientations. The spatial distribution of the splitting parameters and results of anisotropy layering and depth analyses can be explained by a model involving three flow systems. The sub‐slab flow initially entraining with the shallow‐dipping Yakutat slab deflects to a trench‐parallel direction due to slab retreat and an increase in slab dip, and flows northeastward toward the slab edge, where it splits into two branches. The first branch enters the mantle wedge as a toroidal flow and flows southwestward along the slab, and the second branch continues approximately eastward. The flowlines of the toroidal and continued flow systems are approximately orthogonal to each other in the vicinity of the slab edge, producing the observed small splitting times and spatially varying fast orientations. 
    more » « less
  4. Fundamental to plate tectonics is the subduction of cold and mechanically strong oceanic plates. While the subducted plates are conventionally regarded to be impermeable to mantle flow and separate the mantle wedge and the subslab region, isolated openings have been proposed. By combining new shear wave splitting measurements with results from geodynamic modeling and recent seismic tomography and geochemical observations, we show that the upper ~200 km of the Cocos slab in northern Central America is intensively fractured. The slab there is strong enough to produce typical arc volcanoes and Benioff Zone earthquakes but allows mantle flow to traverse from the subslab region to the mantle wedge. Upwelling of hot subslab mantle flow through the slab provides a viable explanation for the behind-the-volcanic-front volcanoes that are geochemically distinct from typical arc volcanoes, and for the puzzling high heat flow, high elevation, and low Bouguer gravity anomalies observed in northern Central America. 
    more » « less
  5. We utilized shear wave splitting analysis of teleseismic SKS, SKKS, and PKS phases to infer upper mantle deformational fabrics across a substantial area of Southeast Asia, where splitting measurements were previously limited. We used newly available permanent and temporary broadband seismic networks deployed across the Indo-Burma subduction zone and the eastern Indochina peninsula. The resulting 492 well-constrained splitting and 654 null measurements from 185 stations reveal clear large-scale patterns in the mantle deformational fabrics in response to the highly oblique active subduction and a large transform plate boundary. We identified two distinct domains of mantle deformation fabrics in the western Burma microplate and the eastern Indochina peninsula. In the former, trench parallel N-S fast polarization directions with an average lag time (δt) of 1.9 s are observed beneath the Indo-Burman Ranges. We suggest the observed splitting is partly due to anisotropy in the sub-slab region and relates to shear induced by the north moving Indian plate. The lithospheric fabric within the Indo-Burman Ranges and underlying subducting slab fabric contribute to produce the observed average δt of 1.9 s. The δt value decreases to an average of 1.0 s towards the back-arc until we reach the dextral Sagaing fault. In the second domain, starting approximately 100 km east of the Sagaing fault, we observe a consistent E-W fast direction with an average δt of 1.10 s in the eastern Shan-Thai and Indochina blocks. We interpret the E-W fabric as due to the deformation associated with the westward spreading of the Hainan mantle plume, possibly driven by overriding plate motion. Low velocities in the shallow mantle and late Cenozoic intraplate volcanism in this region support the plume-driven asthenospheric flow model in the Indochina peninsula. The sudden transition of the fast polarization direction from N-S to E-W along the eastern edge of the Burma microplate indicates the Sagaing fault acts as a mantle flow boundary between the subduction dominated trench parallel flow to the west and plume induced asthenospheric flow to the east. We also observed no net splitting beneath the Bengal basin which is most likely due to the presence of frozen vertical fabric resulting from the Kerguelen plume activity during Early Cretaceous. 
    more » « less