skip to main content


Title: Determination of Emission Factors of Pollutants From Biomass Burning of African Fuels in Laboratory Measurements
Abstract

Biomass burning (BB) is a major source of pollutants that impact local, regional, and global climate, air quality, and public health. However, the influence of burning conditions and fuel type on the emission factors of pollutants is still not well understood. Here, we present the results from a laboratory study of emission factors (EFs) of pollutants from six different sub‐Saharan African biomass fuels combusted under a wide range of burning conditions, ranging from smoldering to flaming. We found that particulate matter (PM) and carbon monoxide (CO) EFs (g (kg wood)−1) are highly sensitive to the burning conditions, with an order of magnitude variation between flaming and smoldering burning conditions. Nitric oxide (NO) EF shows a fuel type dependence, with higher NO EFs for fuels with larger nitrogen content. While CO is not generally a proxy for PM2.5emissions, in this work a correlation was found between CO and PM emissions generated by combustion of seven wood fuels with moisture content (dry basis) <10% in a tube furnace and measured from a laboratory smog chamber with a temperature of ∼21–24°C and an RH below 5%. Unlike total PM, EFs of inorganic particle‐phase species do not show dependence on burning conditions. Finally, we showed that burning biomass fuels in a tube furnace would be a useful experimental approach to study BB emission under controlled burning conditions.

 
more » « less
NSF-PAR ID:
10444025
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
126
Issue:
20
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. An accurate measurement of the optical properties of aerosol is critical for quantifying the effect of aerosol on climate. Uncertainties persist and results of measurements vary significantly. Biomass burning (BB) aerosol has been extensively studied through both field and laboratory environments for North American fuels to understand the changes in opticaland chemical properties as a function of aging. There is a need for a widersampling of fuels from different regions of the world for laboratory studies. This work represents the first such study of the optical andchemical properties of wood fuel samples commonly used for domestic purposes ineast Africa. In general, combustion temperature or modified combustionefficiency (MCE) plays a major role in the optical properties of the emitted aerosol. For fuels combusted with MCE of 0.974±0.015, which is referred to as flaming-dominated combustion, the single-scattering albedo (SSA) values were in the range of 0.287 to 0.439, while for fuels combusted with MCE of 0.878±0.008, which is referred to as smoldering-dominated combustion, the SSA values were in the range of 0.66 to 0.769. There is a clear but very small dependence of SSA on fuel type. A significant increase in the scattering and extinction cross section (with no significant change inabsorption cross section) was observed, indicating the occurrence of chemistry, even during dark aging for smoldering-dominated combustion. Thisfact cannot be explained by heterogeneous oxidation in the particle phase,and we hypothesize that secondary organic aerosol formation is potentiallyhappening during dark aging. After 12 h of photochemical aging, BB aerosolbecomes highly scattering with SSA values above 0.9, which can be attributedto oxidation in the chamber. Aging studies of aerosol from flaming-dominatedcombustion were inconclusive due to the very low aerosol number concentration. We also attempted to simulate polluted urban environments byinjecting volatile organic compounds (VOCs) and BB aerosol into the chamber, but no distinct difference was observed when compared to photochemical aging in the absence of VOCs. 
    more » « less
  2. null (Ed.)
    Biomass burning (BB) aerosols contribute to climate forcing, but much is still unknown about the extent of this forcing, owing partially to the high level of uncertainty regarding BB aerosol optical properties. A key optical parameter is the refractive index (RI), which influences the absorbing and scattering properties of aerosols. This quantity is not measured directly, but it is obtained by fitting the measured scattering cross section and extinction cross section to a theoretical model using the RI as a fitting parameter. We used the Rayleigh–Debye–Gans (RDG) approximation to retrieve the complex RI of freshly emitted BB aerosol from two fuels (eucalyptus and olive) from Africa in the spectral range of 500–580 nm. Experimental measurements were carried out using cavity ring-down spectroscopy to measure extinction over the range of wavelengths of 500–580 nm and nephelometry to measure scattering at three wavelengths of 450, 550, and 700 nm for size-selected BB aerosol particles. The fuels were combusted in a tube furnace at a temperature of 800 °C, which is representative of the flaming stage of burning. Filter samples were collected and imaged using tunneling electron microscopy to obtain information on the morphology and size of the particles, which was used in the RDG calculations. The mean radii of the monomers were 27.8 and 31.5 nm for the eucalyptus and the olive fuels, respectively. The components of the retrieved complex RI were in the range of 1.31 ≤ n ≤ 1.56 and 0.045 ≤ k ≤ 0.468. The real and complex parts of the RI increase with increasing particle mobility diameter. The real part of the RI is lower, and the imaginary part is higher than what was recommended in literature for black carbon generated by propane or field measurements from fires of mixed wood samples. Fuel dependent results from controlled laboratory experiments can be used in climate modeling efforts and to constrain field measurements from biomass burning. 
    more » « less
  3. null (Ed.)
    Abstract. There are many fuels used for domestic purposes in east Africa, producing a significant atmospheric burden of the resulting aerosols, which includes biomass burning particles. However, the aerosol physicochemical properties are poorly understood. Here, the combustion of eucalyptus, acacia, and olive fuels was performed at 500 and 800 ∘C in a tube furnace, followed by immediate filter collection for fresh samples or introduction into a photochemical chamber to simulate atmospheric photochemical aging under the influence of anthropogenic emissions. The aerosol generated in the latter experiment was collected onto filters after 12 h of photochemical aging. 500 and 800 ∘C were selected to simulate smoldering and flaming combustion, respectively, and to cover a range of combustion conditions. Methanol extracts from Teflon filters were analyzed by ultra-performance liquid chromatography interfaced to both a diode array detector and an electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer (UPLC/DAD-ESI-HR-QTOFMS) to determine the light absorption properties of biomass burning organic aerosol constituents chemically characterized at the molecular level. Few chemical or UV–visible (UV: ultraviolet) differences were apparent between samples for the fuels when combusted at 800 ∘C. Differences in single-scattering albedo (SSA) between fresh samples at this temperature were attributed to compounds not captured in this analysis, with eucalyptol being one suspected missing component. For fresh combustion at 500 ∘C, many species were present; lignin pyrolysis and distillation products are more prevalent in eucalyptus, while pyrolysis products of cellulose and at least one nitro-aromatic species were more prevalent in acacia. SSA trends areconsistent with this, particularly if the absorption of those chromophoresextends to the 500–570 nm region. Upon aging, both show that resorcinolor catechol was removed to the highest degree, and both aerosol types weredominated by loss of pyrolysis and distillation products, though they differed in the specific compounds being consumed by the photochemical aging process. 
    more » « less
  4. Abstract

    Long‐term exposure to ambient fine particulate matter (PM2.5) is the second leading risk factor of premature death in Sub‐Saharan Africa. We use GEOS‐Chem to quantify the effects of (a) trash burning, (b) residential solid‐fuel burning, and (c) open biomass burning (BB) (i.e., landscape fires) on ambient PM2.5and PM2.5‐attributable mortality in Africa. Using a series of sensitivity simulations, we excluded each of the three combustion sources in each of five African regions. We estimate that in 2017 emissions from these three combustion sources within Africa increased global ambient PM2.5by 2%, leading to 203,000 (95% confidence interval: 133,000–259,000) premature mortalities yr−1globally and 167,000 premature mortalities yr−1in Africa. BB contributes more ambient PM2.5‐related premature mortalities per year (63%) than residential solid‐fuel burning (29%) and trash burning (8%). Open BB in Central Africa leads to the largest number of PM2.5‐attributed mortalities inside the region, while trash burning in North Africa and residential solid‐fuel burning in West Africa contribute the most regional mortalities for each source. Overall, Africa has a unique ambient air pollution profile because natural sources, such as windblown dust and BB, contribute strongly to ambient PM2.5levels and PM2.5‐related mortality. Air pollution policies may need to focus on taking preventative measures to avoid exposure to ambient PM2.5from these less‐controllable sources.

     
    more » « less
  5. Abstract. Western US wildlands experience frequent and large-scale wildfires which arepredicted to increase in the future. As a result, wildfire smoke emissionsare expected to play an increasing role in atmospheric chemistry whilenegatively impacting regional air quality and human health. Understanding theimpacts of smoke on the environment is informed by identifying andquantifying the chemical compounds that are emitted during wildfires and byproviding empirical relationships that describe how the amount andcomposition of the emissions change based upon different fire conditions andfuels. This study examined particulate organic compounds emitted from burningcommon western US wildland fuels at the US Forest Service Fire ScienceLaboratory. Thousands of intermediate and semi-volatile organic compounds(I/SVOCs) were separated and quantified into fire-integrated emission factors(EFs) using a thermal desorption, two-dimensional gas chromatograph withonline derivatization coupled to an electron ionization/vacuum ultraviolethigh-resolution time-of-flight mass spectrometer(TD-GC × GC-EI/VUV-HRToFMS). Mass spectra, EFs as a function ofmodified combustion efficiency (MCE), fuel source, and other definingcharacteristics for the separated compounds are provided in the accompanyingmass spectral library. Results show that EFs for total organic carbon (OC),chemical families of I/SVOCs, and most individual I/SVOCs span 2–5 orders ofmagnitude, with higher EFs at smoldering conditions (low MCE) than flaming.Logarithmic fits applied to the observations showed that log (EFs) forparticulate organic compounds were inversely proportional to MCE. Thesemeasurements and relationships provide useful estimates of EFs for OC,elemental carbon (EC), organic chemical families, and individual I/SVOCs as afunction of fire conditions. 
    more » « less