Abstract Rapid ice loss from the Greenland ice sheet since 1992 is due in equal parts to increased surface melting and accelerated ice flow. The latter is conventionally attributed to ocean warming, which has enhanced submarine melting of the fronts of Greenland’s marine-terminating glaciers. Yet, through the release of ice sheet surface meltwater into the ocean, which excites near-glacier ocean circulation and in turn the transfer of heat from ocean to ice, a warming atmosphere can increase submarine melting even in the absence of ocean warming. The relative importance of atmospheric and oceanic warming in driving increased submarine melting has, however, not been quantified. Here, we reconstruct the rate of submarine melting at Greenland’s marine-terminating glaciers from 1979 to 2018 and estimate the resulting dynamic mass loss. We show that in south Greenland, variability in submarine melting was indeed governed by the ocean, but, in contrast, the atmosphere dominated in the northwest. At the ice sheet scale, the atmosphere plays a first-order role in controlling submarine melting and the subsequent dynamic mass loss. Our results challenge the attribution of dynamic mass loss to ocean warming alone and show that a warming atmosphere has amplified the impact of the ocean on the Greenland ice sheet. 
                        more » 
                        « less   
                    
                            
                            An Improved and Observationally‐Constrained Melt Rate Parameterization for Vertical Ice Fronts of Marine Terminating Glaciers
                        
                    
    
            Abstract Submarine melting at Greenland's marine terminating glaciers is a crucial, yet poorly constrained process in the coupled ice‐ocean system. Application of Antarctic melt rate representations, derived for floating glacier tongues, to non‐floating marine terminating glaciers commonly found in Greenland, results in a dramatic underestimation of submarine melting. Here, we revisit the physical theory underlying melt rate parameterizations and leverage recently published observational data to derive a novel melt rate parameterization. This is the first parameterization that (a) consistently comprises both convective‐ and shear‐dominated melt regimes, (b) includes coefficients quantitatively constrained using observational data, and (c) is applicable to any vertical glacier front. We show that, compared to the current state‐of‐the‐art approach, the scheme provides an improved fit to observed melt rates on the scale of the terminating front, offering an opportunity to incorporate this critical missing forcing into ocean circulation models. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1924546
- PAR ID:
- 10444031
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 18
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Marine-terminating glaciers on the Antarctic Peninsula (AP) have retreated, accelerated and thinned in response to climate change in recent decades. Ocean warming has been implicated as a trigger for these changes in glacier dynamics, yet little data exist near glacier termini to assess the role of ocean warming here. We use remotely-sensed iceberg melt rates seaward of two glaciers on the eastern and six glaciers on the western AP from 2013 to 2019 to explore connections between variations in ocean conditions and glacier frontal ablation. We find iceberg melt rates follow regional ocean temperature variations, with the highest melt rates (mean ≈ 10 cm d −1 ) at Cadman and Widdowson glaciers in the west and the lowest melt rates (mean ≈ 0.5 cm d −1 ) at Crane Glacier in the east. Near-coincident glacier frontal ablation rates from 2014 to 2018 vary from ~450 m a −1 at Edgeworth and Blanchard glaciers to ~3000 m a −1 at Seller Glacier, former Wordie Ice Shelf tributary. Variations in iceberg melt rates and glacier frontal ablation rates are significantly positively correlated around the AP (Spearman's ρ = 0.71, p -value = 0.003). We interpret this correlation as support for previous research suggesting submarine melting of glacier termini exerts control on glacier frontal dynamics around the AP.more » « less
- 
            Abstract Recent acceleration of Greenland's ocean‐terminating glaciers has substantially amplified the ice sheet's contribution to global sea level. Increased oceanic melting of these tidewater glaciers is widely cited as the likely trigger, and is thought to be highest within vigorous plumes driven by freshwater drainage from beneath glaciers. Yet melting of the larger part of calving fronts outside of plumes remains largely unstudied. Here we combine ocean observations collected within 100 m of a tidewater glacier with a numerical model to show that unlike previously assumed, plumes drive an energetic fjord‐wide circulation which enhances melting along the entire calving front. Compared to estimates of melting within plumes alone, this fjord‐wide circulation effectively doubles the glacier‐wide melt rate, and through shaping the calving front has a potential dynamic impact on calving. Our results suggest that melting driven by fjord‐scale circulation should be considered in process‐based projections of Greenland's sea level contribution.more » « less
- 
            Abstract Submarine melting has been implicated in the accelerated retreat of marine‐terminating glaciers globally. Energetic ocean flows, such as subglacial discharge plumes, are known to enhance submarine melting in their immediate vicinity. Using observations and a large eddy simulation, we demonstrate that discharge plumes emit high‐frequency internal gravity waves that propagate along glacier termini and transfer energy to distant regions of the terminus. Our analysis of wave characteristics and their correlation with subglacial discharge forcing suggest that they derive their energy from turbulent motions within the discharge plume and its surface outflow. Accounting for the near‐terminus velocities associated with these waves increases predicted melt rates by up to 70%. This may help to explain known discrepancies between observed melt rates and theoretical predictions. Because the dynamical ingredients—a buoyant plume rising through a stratified ocean—are common to many tidewater glacier systems, such internal waves are likely to be widespread.more » « less
- 
            Abstract. The role of icebergs in narrow fjords hosting marine-terminating glaciers in Greenland is poorly understood, even though iceberg melt results in asubstantial freshwater flux that can exceed the subglacial discharge. Furthermore, the melting of deep-keeled icebergs modifies the verticalstratification of the fjord and, as such, can impact ice–ocean exchanges at the glacier front. We model an idealised representation of thehigh-silled Ilulissat Icefjord in West Greenland with the MITgcm ocean circulation model, using the IceBerg package to study the effect of submarineiceberg melt on fjord water properties over a runoff season, and compare our results with available observations from 2014. We find the subglacialdischarge plume to be the primary driver of the seasonality of circulation, glacier melt and iceberg melt. Furthermore, we find that melting oficebergs modifies the fjord in three main ways: first, icebergs cool and freshen the water column over their vertical extent; second, iceberg-melt-induced changes to fjord stratification cause the neutral buoyancy depth of the plume and the export of glacially modified waters to be deeper;third, icebergs modify the deep basin, below their vertical extent, by driving mixing of the glacially modified waters with the deep-basin watersand by modifying the incoming ambient waters. Through the combination of cooling and causing the subglacial-discharge-driven plume to equilibratedeeper, icebergs suppress glacier melting in the upper layer, resulting in undercutting of the glacier front. Finally, we postulate that the impactof submarine iceberg melt on the neutral buoyancy depth of the plume is a key mechanism linking the presence of an iceberg mélange with theglacier front, without needing to invoke mechanical effects.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
