skip to main content


Title: Outdoor Worker Stress Monitoring Electronics with Nanofabric Radiative Cooler‐Based Thermal Management
Abstract

Severe stress endangers outdoor workers who are in an exceedingly hot workplace. Although recent studies quantify stress levels on the human skin, they still rely on rigid, bulky sensor modules, causing data loss from motion artifacts and limited field‐deployability for continuous health monitoring. Moreover, no prior work shows a wearable device that can endure heat exposure while showing continuous monitoring of a subject's stress under realistic working environments. Herein, a soft, field‐deployable, wearable bioelectronic system is introduced for detecting outdoor workers' stress levels with negligible motion artifacts and controllable thermal management. A nanofabric radiative cooler (NFRC) and miniaturized sensors with a nanomembrane soft electronic platform are integrated to measure stable electrodermal activities and temperature in hot outdoor conditions. The NFRC exhibits outstanding cooling performance in sub‐ambient air with high solar reflectivity and high thermal emissivity. The integrated wearable device with all embedded electronic components and the NFRC shows a lower temperature (41.1%) in sub‐ambient air than the NFRC‐less device while capturing improved operation time (18.2%). In vivo human study of the bioelectronics with agricultural activities demonstrates the device's capability for portable, continuous, real‐time health monitoring of outdoor workers with field deployability.

 
more » « less
PAR ID:
10444063
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recent developments of micro‐sensors and flexible electronics allow for the manufacturing of health monitoring devices, including electrocardiogram (ECG) detection systems for inpatient monitoring and ambulatory health diagnosis, by mounting the device on the chest. Although some commercial devices in reported articles show examples of a portable recording of ECG, they lose valuable data due to significant motion artifacts. Here, a new class of strain‐isolating materials, hybrid interfacial physics, and soft material packaging for a strain‐isolated, wearable soft bioelectronic system (SIS) is reported. The fundamental mechanism of sensor‐embedded strain isolation is defined through a combination of analytical and computational studies and validated by dynamic experiments. Comprehensive research of hard‐soft material integration and isolation mechanics provides critical design features to minimize motion artifacts that can occur during both mild and excessive daily activities. A wireless, fully integrated SIS that incorporates a breathable, perforated membrane can measure real‐time, continuous physiological data, including high‐quality ECG, heart rate, respiratory rate, and activities. In vivo demonstration with multiple subjects and simultaneous comparison with commercial devices captures the SIS's outstanding performance, offering real‐world, continuous monitoring of the critical physiological signals with no data loss over eight consecutive hours in daily life, even with exaggerated body movements.

     
    more » « less
  2. Abstract

    Stress is one of the main causes that increase the risk of serious health problems. Recent wearable devices have been used to monitor stress levels via electrodermal activities on the skin. Although many biosensors provide adequate sensing performance, they still rely on uncomfortable, partially flexible systems with rigid electronics. These devices are mounted on either fingers or palms, which hinders a continuous signal monitoring. A fully‐integrated, stretchable, wireless skin‐conformal bioelectronic (referred to as “SKINTRONICS”) is introduced here that integrates soft, multi‐layered, nanomembrane sensors and electronics for continuous and portable stress monitoring in daily life. The all‐in‐one SKINTRONICS is ultrathin, highly soft, and lightweight, which overall offers an ergonomic and conformal lamination on the skin. Stretchable nanomembrane electrodes and a digital temperature sensor enable highly sensitive monitoring of galvanic skin response (GSR) and temperature. A set of comprehensive signal processing, computational modeling, and experimental study provides key aspects of device design, fabrication, and optimal placing location. Simultaneous comparison with two commercial stress monitors captures the enhanced performance of SKINTRONICS in long‐term wearability, minimal noise, and skin compatibility. In vivo demonstration of continuous stress monitoring in daily life reveals the unique capability of the soft device as a real‐world applicable stress monitor.

     
    more » « less
  3. Abstract

    Hotter summers caused by global warming and increased workload and duration are endangering the health of farmworkers, a high‐risk population for heat‐related illness (HRI), and deaths. Although prior studies using wearable sensors show the feasibility of employing field‐collected data for HRI monitoring, existing devices still have limitations, such as data loss from motion artifacts, device discomfort from rigid electronics, difficulties with administering ingestible sensors, and low temporal resolution. Here, this paper introduces a wireless, wearable bioelectronic system with functionalities for continuous monitoring of skin temperature, electrocardiograms (ECG), heart rates (HR), and activities, configured in a single integrated package. Advanced nanomanufacturing based on laser machining allows rapid device fabrication and direct incorporation of sensors with a highly breathable substrate, allowing for managing excessive sweating and multimodal stresses. To validate the device's performance in agricultural settings, the device is applied to multiple farmworkers at various operations, including fernery, nursery, and crop. The accurate data recording, including high‐fidelity ECG (signal‐to‐noise ratio: >20 dB), accurate HR (r= 0.89,r2= 0.65 in linear correlation), and reliable temperature/activity, confirms the device's capability for multiparameter health monitoring of farmworkers.

     
    more » « less
  4.  
    more » « less
  5. Abstract

    Athletes are at high risk of dehydration, fatigue, and cardiac disorders due to extreme performance in often harsh environments. Despite advancements in sports training protocols, there is an urgent need for a non‐invasive system capable of comprehensive health monitoring. Although a few existing wearables measure athlete's performance, they are limited by a single function, rigidity, bulkiness, and required straps and adhesives. Here, an all‐in‐one, multi‐sensor integrated wearable system utilizing a set of nanomembrane soft sensors and electronics, enabling wireless, real‐time, continuous monitoring of saliva osmolality, skin temperature, and heart functions is introduced. This system, using a soft patch and a sensor‐integrated mouthguard, provides comprehensive monitoring of an athlete's hydration and physiological stress levels. A validation study in detecting real‐time physiological levels shows the device's performance in capturing moments (400–500 s) of synchronized acute elevation in dehydration (350%) and physiological strain (175%) during field training sessions. Demonstration with a few human subjects highlights the system's capability to detect early signs of health abnormality, thus improving the healthcare of sports athletes.

     
    more » « less