skip to main content


Title: The influence of an in‐network lake on the timing, form, and magnitude of downstream dissolved organic carbon and nutrient flux
Abstract

Within fluvial networks, lakes can be sinks or sources of dissolved organic carbon (DOC) and nutrients, yet the controls over sink‐source behavior remain unclear. We investigated the influence that an in‐network lake exerted on DOC and nutrient export. Our investigation consisted of: (1) injecting a conservative tracer to determine lake travel times and flow paths; (2) sampling lake inflow, outflow, and surrounding groundwater to determine water and nutrient budgets; and, (3) sampling internal lake profiles to ascertain in‐lake physico‐chemical patterns through time. Conservative tracer data indicated considerable in‐lake retention and combined with inflow‐outflow discharge measurements revealed a decoupling of kinematic and solute pulses. Nitrate (NO3) was the dominant form of dissolved inorganic nitrogen (DIN) at lake inflow whereas ammonium (NH4) became the dominant component at lake outflow. The lake was a sink for NO3‐N and PO4, but a source for NH4‐N, DON, TDN, and DOC. We observed hydrologic controls on DOC concentrations and export patterns, but redox controls on DIN dynamics. Our results indicate that lakes within fluvial networks can be sources of dissolved organic material and reduced nitrogen (NH4) while simultaneously being sinks for NO3‐N and PO4‐P. Determining controls on sink‐source behavior and the cumulative effect of lakes on DOC and nutrient budgets is a necessary first step toward improved understanding of the role of lakes in network‐ to regional‐scale dynamics.

 
more » « less
NSF-PAR ID:
10444072
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
52
Issue:
11
ISSN:
0043-1397
Page Range / eLocation ID:
p. 8668-8684
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Subterranean estuaries (STEs) form in the subsurface where fresh groundwater and seawater meet and mix. Subterranean estuaries support a variety of biogeochemical processes including those transforming nitrogen (N). Groundwater is often enriched with dissolved inorganic nitrogen (DIN), and transformations in the STE determine the fate of that DIN, which may be discharged to coastal waters. Nitrification oxidizes ammonium (NH4+) to nitrate, making DIN available for N removal via denitrification. We measured nitrification at an STE, in Virginia, USA using in situ and ex situ methods including conservative mixing models informed by in situ geochemical profiles, an in situ experiment with15NH4+tracer injection, and ex situ sediment slurry incubations with15NH4+tracer addition. All methods indicated nitrification in the STE, but the ex situ sediment slurries revealed higher rates than both the in situ tracr experiment and mixing model estimations. Nitrification rates ranged 55.0–183.16 μmol N m−2 d−1based on mixing models, 94.2–225 μmol N m−2 d−1in the in situ tracer experiment, and 36.6–109 μmol N m−2 d−1slurry incubations. The in situ tracer experiment revealed higher rates and spatial variation not captured by the other methods. The geochemical complexity of the STE makes it difficult to replicate in situ conditions with incubations and calculations based on chemical profiles integrate over longer timescales, therefore, in situ approaches may best quantify transformation rates. Our data suggest that STE nitrification produces NO3, altering the DIN pool discharged to overlying water via submarine groundwater discharge.

     
    more » « less
  2. Abstract

    Recent work demonstrates extensive nutrient exports from outlet glaciers of the Greenland Ice Sheet. In comparison, nutrient exports are poorly defined for deglaciated watersheds that were exposed during ice retreat and retain reactive comminuted glacial sediments. Nutrient exports from deglaciated watersheds may differ from glacial watersheds due to their longer exposure times, more mature chemical weathering, and ecosystem succession. To evaluate nutrient exports from glacial and deglaciated watersheds, we compare discharge and dissolved (<0.45 μm filtered) nutrient concentrations in two glacial and six non‐glacial streams in southwestern and southern Greenland. Glacial streams have orders of magnitude greater instantaneous discharge than non‐glacial streams but their specific discharges are more similar, differing by up to a factor of 10. Compared with non‐glacial streams, filtered water of glacial streams have on average (1) higher inorganic nitrogen (DIN) and PO4concentrations, lower Si concentrations, and Fe concentrations that are not statistically different; (2) higher DIN and PO4but lower Si specific yields; and (3) lower DIN/PO4, Si/DIN, and Fe/PO4ratios, but indistinguishable Fe/DIN. Maximum specific yields occur in early melt season prior to maximum solar radiation for non‐glacial streams, and in mid‐melt season as solar radiation wanes for proglacial streams. Impacts to coastal ecosystems from nutrient exports depend on suspended sediment loads and processing in the estuaries, but landscape exposure during glacial terminations should decrease DIN and dissolved PO4and increase dissolved Si exports, while increased meltwater runoff associated with future warming should increase DIN and dissolved PO4and decrease dissolved Si exports.

     
    more » « less
  3. Abstract

    Over the past 30 plus years, the Arctic has warmed at a rate of 0.6°C per decade. This has resulted in considerable permafrost thaw and alterations of hydrological and biogeochemical processes. Coincident with these changes, recent studies document increases in annual fluxes of inorganic nutrients in larger Arctic rivers. Changing nutrient fluxes in Arctic rivers have been largely attributed to warming‐induced active layer expansion and newly exposed subsurface source areas. However, the ability of Arctic headwater streams to modulate inorganic nutrient patterns manifested in larger rivers remains unresolved. We evaluated environmental conditions, stream ecosystem metabolism, and nutrient uptake in three headwater streams of the Alaskan Arctic to quantify patterns of retention of inorganic nitrogen (N) and phosphorous (P). We observed elevated ambient nitrate‐N (NO3‐N) concentrations in late summer/early fall in two of three experimental stream reaches. We observed detectable increases in uptake as a result of nutrient addition in 88% of PO4‐P additions (n = 25), 38% of NH4‐N additions (n = 24), and 24% of NO3‐N additions (n = 25). We observed statistically significant relationships between NH4‐N uptake and ecosystem respiration, and PO4‐P uptake and gross primary productivity. Although these headwater streams demonstrate ability to control downstream transport of PO4‐P, we observed little evidence the same holds for dissolved inorganic N. Consequently, our results suggest that continued increases in terrestrial to aquatic N transfer in Arctic headwater landscapes are likely to be evident in larger Arctic rivers, in‐network lakes, and coastal environments.

     
    more » « less
  4. Abstract

    Systematic regional variations in the ratio of nutrient depth gradients of dissolved inorganic carbon (ΔDIC):nitrate (ΔNO3):phosphate (ΔPO4) in the upper layer (300 m) of the Pacific Ocean are observed. Regional variations in the ΔDIC/ΔNO3/ΔPO4are primarily the result of three processes, that is, the C/N/P of organic matter (OM) being exported and subsequently degraded, nitrogen fixation, and air‐sea CO2gas exchange. The link between the observed dissolved ΔDIC/ΔNO3/ΔPO4and the C/N/P of exported OM is established using surface layer dissolved DIC, NO3, and PO4budgets. These budgets, in turn, provide a means to indirectly estimate the C/N/P of OM being exported from the surface layer of the ocean. The indirectly estimated C/N/P of exported OM reach maxima in the subtropical gyres at 177/22/1, that is, significantly greater than the Redfield ratio and a minimum in the equatorial ocean at 109/16/1 with both results agreeing with available observed particle C/N/P and ocean biogeochemical models. The budget approach was applied to a bioactive trace element (TE) using the measured dissolved Cadmium (Cd) to PO4gradients to estimate the Cd/P of exported OM in the Pacific Ocean. Combining the budget method with the availability of high‐quality dissolved nutrient and TE data collected during the GOSHIP and GEOTRACES programs could potentially provide estimates of the C/N/P/TE of exported OM on global ocean scales which would significantly improve our understanding of the link between the ocean's biological pump and dissolved nutrient distributions in the upper ocean.

     
    more » « less
  5. Abstract

    We investigated nutrient patterns and their relationship to vertical carbon export using results from 38 Lagrangian experiments in the California Current Ecosystem. The dominant mode of variability reflected onshore‐offshore nutrient gradients. A secondary mode of variability was correlated with silica excess and dissolved iron and likely reflects regional patterns of iron limitation. The biological carbon pump was enhanced in high‐nutrient and Fe‐stressed regions. Patterns in the nutrient landscape proved to be better predictors of the vertical flux of sinking particles than contemporaneous measurements of net primary production. Our results suggest an important role for Fe‐stressed diatoms in vertical carbon flux. They also suggest that either preferential recycling of N or non‐Redfieldian nutrient uptake by diatoms may lead to high PO43−:NO3and Si(OH)4:NO3ratios, following export of P‐ and Si‐enriched organic matter. Increased export following Fe stress may partially explain inverse relationships between net primary productivity and export efficiency.

     
    more » « less