skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 4, 2024

Title: Sulfur‐Containing Foldamer‐Based Artificial Lithium Channels
Abstract

Unlike many other biologically relevant ions (Na+, K+, Ca2+, Cl, etc) and protons, whose cellular concentrations are closely regulated by highly selective channel proteins, Li+ion is unusual in that its concentration is well tolerated over many orders of magnitude and that no lithium‐specific channel proteins have so far been identified. While one naturally evolved primary pathway for Li+ions to traverse across the cell membrane is through sodium channels by competing with Na+ions, highly sought‐after artificial lithium‐transporting channels remain a major challenge to develop. Here we show that sulfur‐containing organic nanotubes derived from intramolecularly H‐bonded helically folded aromatic foldamers of 3.6 Å in hollow cavity diameter could facilitate highly selective and efficient transmembrane transport of Li+ions, with high transport selectivity factors of 15.3 and 19.9 over Na+and K+ions, respectively.

 
more » « less
NSF-PAR ID:
10444091
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
39
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Unlike many other biologically relevant ions (Na+, K+, Ca2+, Cl, etc) and protons, whose cellular concentrations are closely regulated by highly selective channel proteins, Li+ion is unusual in that its concentration is well tolerated over many orders of magnitude and that no lithium‐specific channel proteins have so far been identified. While one naturally evolved primary pathway for Li+ions to traverse across the cell membrane is through sodium channels by competing with Na+ions, highly sought‐after artificial lithium‐transporting channels remain a major challenge to develop. Here we show that sulfur‐containing organic nanotubes derived from intramolecularly H‐bonded helically folded aromatic foldamers of 3.6 Å in hollow cavity diameter could facilitate highly selective and efficient transmembrane transport of Li+ions, with high transport selectivity factors of 15.3 and 19.9 over Na+and K+ions, respectively.

     
    more » « less
  2. Abstract

    Currently, completely abiotic channel systems that concurrently reproduce the high selectivity and high permeation rate of natural protein channels are rare. Here, we provide one such biomimetic channel system, i.e., a novel family of helically folded hybrid amide foldamers that can serve as powerful artificial proton channels to mimic key transport features of the exceptionally selective Matrix‐2 (M2) proton channels. Possessing an angstrom‐scale tubular pore 3 Å in diameter, these low water permeability artificial channels transport protons at a rate 1.22 and 11 times as fast as gramicidin A and M2 channels, respectively, with exceptionally high selectivity factors of 167.6, 122.7, and 81.5 over Cl, Na+, and K+ions. Based on the experimental and computational findings, we propose a novel proton transport mechanism where a proton may create a channel‐spanning water chain from two or more short water chains to facilitate its own transmembrane flux via the Grotthuss mechanism.

     
    more » « less
  3. Abstract

    Currently, completely abiotic channel systems that concurrently reproduce the high selectivity and high permeation rate of natural protein channels are rare. Here, we provide one such biomimetic channel system, i.e., a novel family of helically folded hybrid amide foldamers that can serve as powerful artificial proton channels to mimic key transport features of the exceptionally selective Matrix‐2 (M2) proton channels. Possessing an angstrom‐scale tubular pore 3 Å in diameter, these low water permeability artificial channels transport protons at a rate 1.22 and 11 times as fast as gramicidin A and M2 channels, respectively, with exceptionally high selectivity factors of 167.6, 122.7, and 81.5 over Cl, Na+, and K+ions. Based on the experimental and computational findings, we propose a novel proton transport mechanism where a proton may create a channel‐spanning water chain from two or more short water chains to facilitate its own transmembrane flux via the Grotthuss mechanism.

     
    more » « less
  4. Abstract

    Black phosphorus (BP) with unique 2D structure enables the intercalation of foreign elements or molecules, which makes BP directly relevant to high‐capacity rechargeable batteries and also opens a promising strategy for tunable electronic transport and superconductivity. However, the underlying intercalation mechanism is not fully understood. Here, a comparative investigation on the electrochemically driven intercalation of lithium and sodium using in situ transmission electron microscopy is presented. Despite the same preferable intercalation channels along [100] (zigzag) direction, distinct anisotropic intercalation behaviors are observed, i.e., Li ions activate lateral intercalation along [010] (armchair) direction to form an overall uniform propagation, whereas Na diffusion is limited in the zigzag channels to cause the columnar intercalation. First‐principles calculations indicate that the diffusion of both Li and Na ions along the zigzag direction is energetically favorable, while Li/Na diffusion long the armchair direction encounters an increased energy barrier, but that of Na is significantly larger and insurmountable, which accounts for the orientation‐dependent intercalation channels. The evolution of chemical states during phase transformations (from LixP/NaxP to Li3P/Na3P) is identified by analytical electron diffraction and energy‐loss spectroscopy. The findings elucidate atomistic Li/Na intercalation mechanisms in BP and show potential implications for other similar 2D materials.

     
    more » « less
  5. The lithium supply issue mainly lies in the inability of current mining methods to access lithium sources of dilute concentrations and complex chemistry. Electrochemical intercalation has emerged as a highly selective method for lithium extraction; however, limited source compositions have been studied, which is insufficient to predict its applicability to the wide range of unconventional water sources (UWS). This work addresses the feasibility and identifies the challenges of Li extraction by electrochemical intercalation from UWS, by answering three questions: 1) Is there enough Li in UWS? 2) How would the solution compositions affect the competition of Li + to major ions (Na + /Mg 2+ /K + /Ca 2+ )? 3) Does the complex solution composition affect the electrode stability? Using one-dimensional olivine FePO 4 as the model electrode, we show the complicated roles of major ions. Na + acts as the competitor ion for host storage sites. The competition from Na + grants Mg 2+ and Ca 2+ being only the spectator ions. However, Mg 2+ and Ca 2+ can significantly affect the charge transfer of Li + and Na + , therefore affecting the Li selectivity. We point to improving the selectivity of Li + to Na + as the key challenge for broadening the minable UWS using the olivine host. 
    more » « less