- Award ID(s):
- 2141680
- PAR ID:
- 10444291
- Date Published:
- Journal Name:
- Political Analysis
- Volume:
- 31
- Issue:
- 3
- ISSN:
- 1047-1987
- Page Range / eLocation ID:
- 337 to 351
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Large language models have recently been able to perform well in a wide variety of circumstances. In this work, we explore the possibility of large language models, specifically GPT-3, to write explanations for middle-school mathematics problems, with the goal of eventually using this process to rapidly generate explanations for the mathematics problems of new curricula as they emerge, shortening the time to integrate new curricula into online learning platforms. To generate explanations, two approaches were taken. The first approach attempted to summarize the salient advice in tutoring chat logs between students and live tutors. The second approach attempted to generate explanations using few-shot learning from explanations written by teachers for similar mathematics problems. After explanations were generated, a survey was used to compare their quality to that of explanations written by teachers. We test our methodology using the GPT-3 language model. Ultimately, the synthetic explanations were unable to outperform teacher written explanations. In the future more powerful large language models may be employed, and GPT-3 may still be effective as a tool to augment teachers’ process for writing explanations, rather than as a tool to replace them. The explanations, survey results, analysis code, and a dataset of tutoring chat logs are all available at https://osf.io/wh5n9/.more » « less
-
Large language models have recently been able to perform well in a wide variety of circumstances. In this work, we explore the possibility of large language models, specifically GPT-3, to write explanations for middle-school mathematics problems, with the goal of eventually using this process to rapidly generate explanations for the mathematics problems of new curricula as they emerge, shortening the time to integrate new curricula into online learning platforms. To generate explanations, two approaches were taken. The first approach attempted to summarize the salient advice in tutoring chat logs between students and live tutors. The second approach attempted to generate explanations using few-shot learning from explanations written by teachers for similar mathematics problems. After explanations were generated, a survey was used to compare their quality to that of explanations written by teachers. We test our methodology using the GPT-3 language model. Ultimately, the synthetic explanations were unable to outperform teacher written explanations. In the future more powerful large language models may be employed, and GPT-3 may still be effective as a tool to augment teachers’ process for writing explanations, rather than as a tool to replace them. The explanations, survey results, analysis code, and a dataset of tutoring chat logs are all available at https://osf.io/wh5n9/.more » « less
-
Artificial Intelligence (AI) is a transformative force in communication and messaging strategy, with potential to disrupt traditional approaches. Large language models (LLMs), a form of AI, are capable of generating high-quality, humanlike text. We investigate the persuasive quality of AI-generated messages to understand how AI could impact public health messaging. Specifically, through a series of studies designed to characterize and evaluate generative AI in developing public health messages, we analyze COVID-19 pro-vaccination messages generated by GPT-3, a state-of-the-art instantiation of a large language model. Study 1 is a systematic evaluation of GPT-3's ability to generate pro-vaccination messages. Study 2 then observed peoples' perceptions of curated GPT-3-generated messages compared to human-authored messages released by the CDC (Centers for Disease Control and Prevention), finding that GPT-3 messages were perceived as more effective, stronger arguments, and evoked more positive attitudes than CDC messages. Finally, Study 3 assessed the role of source labels on perceived quality, finding that while participants preferred AI-generated messages, they expressed dispreference for messages that were labeled as AI-generated. The results suggest that, with human supervision, AI can be used to create effective public health messages, but that individuals prefer their public health messages to come from human institutions rather than AI sources. We propose best practices for assessing generative outputs of large language models in future social science research and ways health professionals can use AI systems to augment public health messaging.
-
Large language models have recently been able to perform well in a wide variety of circumstances. In this work, we explore the possi- bility of large language models, specifically GPT-3, to write explanations for middle-school mathematics problems, with the goal of eventually us- ing this process to rapidly generate explanations for the mathematics problems of new curricula as they emerge, shortening the time to inte- grate new curricula into online learning platforms. To generate expla- nations, two approaches were taken. The first approach attempted to summarize the salient advice in tutoring chat logs between students and live tutors. The second approach attempted to generate explanations us- ing few-shot learning from explanations written by teachers for similar mathematics problems. After explanations were generated, a survey was used to compare their quality to that of explanations written by teachers. We test our methodology using the GPT-3 language model. Ultimately, the synthetic explanations were unable to outperform teacher written explanations. In the future more powerful large language models may be employed, and GPT-3 may still be effective as a tool to augment teachers’ process for writing explanations, rather than as a tool to replace them. The prompts, explanations, survey results, analysis code, and a dataset of tutoring chat logs are all available at BLINDED FOR REVIEW.more » « less
-
Large language models have recently been able to perform well in a wide variety of circumstances. In this work, we explore the possi- bility of large language models, specifically GPT-3, to write explanations for middle-school mathematics problems, with the goal of eventually us- ing this process to rapidly generate explanations for the mathematics problems of new curricula as they emerge, shortening the time to inte- grate new curricula into online learning platforms. To generate expla- nations, two approaches were taken. The first approach attempted to summarize the salient advice in tutoring chat logs between students and live tutors. The second approach attempted to generate explanations us- ing few-shot learning from explanations written by teachers for similar mathematics problems. After explanations were generated, a survey was used to compare their quality to that of explanations written by teachers. We test our methodology using the GPT-3 language model. Ultimately, the synthetic explanations were unable to outperform teacher written explanations. In the future more powerful large language models may be employed, and GPT-3 may still be effective as a tool to augment teach- ers’ process for writing explanations, rather than as a tool to replace them. The explanations, survey results, analysis code, and a dataset of tutoring chat logs are all available at https://osf.io/wh5n9/.more » « less