ABSTRACT Apex predators are typically considered dietary generalists, which often masks individual variability. However, individual specialization—consistent differences among individuals in resource use or ecological role—is common in apex predators. In some species, only a few specialized individuals can significantly impact prey populations. Leopard seals (Hydrurga leptonyx) are apex predators important to the structure and function of the Southern Ocean ecosystem. Though broadly described as generalists, little is known about their trophic ecology at the population or individual level. We analyzed δ13C and δ15N profiles in whiskers (n = 46) from 34 leopard seals in the Western Antarctic Peninsula to assess trophic variation. We also evaluated individual consistency across years using repeat samples from 7 seals over 2–10 years. We compared population and individual isotopic niche space and explored drivers of intraspecific variation in leopard seal trophic ecology. We find that leopard seals have a broad trophic niche (range: 6.96%–15.21‰) and are generalists at the population level. However, most individuals are specialists (59% for δ15N and δ13C), with only a few generalists (13% for δ15N, 6% for δ13C). Individuals also specialize at different trophic levels. Most variation in trophic ecology is driven by individual specialization, but sex and mass also contribute. We also find that some seals specialize over time, consistently foraging at the same trophic level, while others switch within and between years. This suggests some seals may disproportionately impact prey, especially when specialists consistently target specific species. Long‐term specialization by a few leopard seals likely contributed to the decline of the local Antarctic fur seal population. Our findings show the importance of examining individual specialization in leopard seals across their range to understand their impact on other prey populations. This approach should be applied to other apex predator populations, as a few specialists can significantly impact ecosystems.
more »
« less
Genetic diversity and demographic history of the leopard seal: A Southern Ocean top predator
Leopard seals ( Hydrurga leptonyx ) are top predators that can exert substantial top-down control of their Antarctic prey species. However, population trends and genetic diversity of leopard seals remain understudied, limiting our understanding of their ecological role. We investigated the genetic diversity, effective population size and demographic history of leopard seals to provide fundamental data that contextualizes their predatory influence on Antarctic ecosystems. Ninety leopard seals were sampled from the northern Antarctic Peninsula during the austral summers of 2008–2019 and a 405bp segment of the mitochondrial control region was sequenced for each individual. We uncovered moderate levels of nucleotide (π = 0.013) and haplotype (Hd = 0.96) diversity, and the effective population size was estimated at around 24,000 individuals (NE = 24,376; 95% CI: 16,876–33,126). Consistent with findings from other ice-breeding pinnipeds, Bayesian skyline analysis also revealed evidence for population expansion during the last glacial maximum, suggesting that historical population growth may have been boosted by an increase in the abundance of sea ice. Although leopard seals can be found in warmer, sub-Antarctic locations, the species’ core habitat is centered on the Antarctic, making it inherently vulnerable to the loss of sea ice habitat due to climate change. Therefore, detailed assessments of past and present leopard seal population trends are needed to inform policies for Antarctic ecosystems.
more »
« less
- Award ID(s):
- 2146068
- PAR ID:
- 10444297
- Editor(s):
- Janke, Axel
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 18
- Issue:
- 8
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0284640
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Animals that display plasticity in behavioral, ecological, and morphological traits are better poised to cope with environmental disturbances. Here, we examined individual plasticity and intraspecific variation in the morphometrics, movement patterns, and dive behavior of an enigmatic apex predator, the leopard seal ( Hydrurga leptonyx ). Satellite/GPS tags and time-depth recorders were deployed on 22 leopard seals off the Western Antarctic Peninsula. Adult female leopard seals were significantly larger (454±59 kg) and longer (302±11 cm) than adult males (302±22 kg, 276±11 cm). As females were 50% larger than their male counterparts, leopard seals are therefore one of the most extreme examples of female-biased sexual size dimorphism in marine mammals. Female leopard seals also spent more time hauled-out on land and ice than males. In the austral spring/summer, three adult female leopard seals hauled-out on ice for 10+ days, which likely represent the first satellite tracks of parturition and lactation for the species. While we found sex-based differences in morphometrics and haul-out durations, other variables, including maximum distance traveled and dive parameters, did not vary by sex. Regardless of sex, some leopard seals remained in near-shore habitats, traveling less than 50 kilometers, while other leopard seals traveled up to 1,700 kilometers away from the tagging location. Overall, leopard seals were short (3.0±0.7 min) and shallow (29±8 m) divers. However, within this general pattern, some individual leopard seals primarily used short, shallow dives, while others switched between short, shallow dives and long, deep dives. We also recorded the single deepest and longest dive made by any leopard seal—1, 256 meters for 25 minutes. Together, our results showcased high plasticity among leopard seals tagged in a single location. These flexible behaviors and traits may offer leopard seals, an ice-associated apex predator, resilience to the rapidly changing Southern Ocean.more » « less
-
Leopard seals have traditionally been considered Antarctic predators with a Southern Ocean distribution. Historically, sightings north of the Antarctic Polar Front were considered extralimital. However, recent studies suggest a significant presence of leopard seals in subantarctic regions. Here, we assess the spatial occurrence, residency status, and temporal trends of leopard seals in Chile using historical records, stranding reports, standardized monitoring data, photo-identification (photo ID) catalogs, and sightings from four research expeditions. We also characterize glaciers where sightings are concentrated, identifying glaciological and geomorphic attributes that prolong iceberg residency time, which is linked to high leopard seal concentrations. Based on these attributes, we evaluated other potential suitable glacial habitats in Patagonia. We obtained 438 sighting records of leopard seals from 1927 to 2023. Over the last 15 years, we documented a 4-18% annual increase in stranding events reported to national authorities. Most sightings (75%) were concentrated in two hotspots: National Park San Rafael Lagoon, located in Northern Patagonia, and Parry Fjord in Tierra del Fuego. Using photo ID catalogs, we identified 19 resident leopard seals, including 16 multi-year residents observed between 2010-2023 (10 in San Rafael, 6 in Tierra del Fuego) and 3 potential residents (observed multiple months in the same year in Tierra del Fuego). San Rafael monitoring data showed no inter-annual trend, but seasonal trends were observed. We also provide evidence of breeding in Chile, with records of at least 14 pups born and at least two females giving birth in multiple years. Our habitat characterization suggests that calving flux, fjord sinuosity, and fjord width variation are crucial for prolonging iceberg residency in hotspot areas. Based on these attributes, we identified 13 additional fjords in Patagonia as “very likely” suitable for leopard seals. Our study confirms that Patagonia is part of the species’ breeding distribution, shifting the paradigm that leopard seals are merely visitors north of the Antarctic Polar Front. Given the limited number of suitable glaciers in Chile and the potential impacts of climate change, our assessment highlights glacial retreat as a major threat for the ecosystem of this pagophilic marine apex predator in South America.more » « less
-
Evaluating physiological responses in the context of a species’ life history, demographics, and ecology is essential to understanding the health of individuals and populations. Here, we measured the main mammalian glucocorticoid, cortisol, in an elusive Antarctic apex predator, the leopard seal ( Hydrurga leptonyx ). We also examined intraspecific variation in cortisol based on life history (sex), morphometrics (body mass, body condition), and ecological traits ( δ 15 N, δ 13 C). To do this, blood samples, life history traits, and morphometric data were collected from 19 individual leopard seals off the Western Antarctic Peninsula. We found that adult leopard seals have remarkably high cortisol concentrations (100.35 ± 16.72 μg/dL), showing the highest circulating cortisol concentration ever reported for a pinniped: 147 μg/dL in an adult male. Leopard seal cortisol concentrations varied with sex, body mass, and diet. Large adult females had significantly lower cortisol (94.49 ± 10.12 μg/dL) than adult males (120.85 ± 6.20 μg/dL). Similarly, leopard seals with higher isotope values (i.e., adult females, δ 15 N: 11.35 ± 0.69‰) had lower cortisol concentrations than seals with lower isotope values (i.e., adult males, δ 15 N: 10.14 ± 1.65‰). Furthermore, we compared cortisol concentrations across 26 closely related Arctoid taxa (i.e., mustelids, bears, and pinnipeds) with comparable data. Leopard seals had the highest mean cortisol concentrations that were 1.25 to 50 times higher than other Arctoids. More broadly, Antarctic ice seals (Lobodontini: leopard seal, Ross seal, Weddell seal, crabeater seal) had higher cortisol concentrations compared to other pinnipeds and Arctoid species. Therefore, high cortisol is a characteristic of all lobodontines and may be a specialized adaptation within this Antarctic-dwelling clade. Together, our results highlight exceptionally high cortisol concentrations in leopard seals (and across lobodontines) and reveal high variability in cortisol concentrations among individuals from a single location. This information provides the context for understanding how leopard seal physiology changes with life history, ecology, and morphology and sets the foundation for assessing their physiology in the context of a rapidly changing Antarctic environment.more » « less
-
Abstract Most of the Ross Sea has been designated a marine protected area (MPA), proposed ‘to protect ecosystem structure and function’. To assess effectiveness, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) selected Adélie (Pygoscelis adeliae) and emperor (Aptenodytes forsteri) penguins, Weddell seals (Leptonychotes weddellii) and Antarctic toothfish (Dissostichus mawsoni) as ecosystem change ‘indicator species’. Stable for decades, penguin and seal populations increased during 1998–2018 to surpass historical levels, indicating that change in ecosystem structure and function is underway. We review historical impacts to population trends, decadal datasets of ocean climate and fishing pressure on toothfish. Statistical modelling for Adélie penguins and Weddell seals indicates that variability in climate factors and cumulative extraction of adult toothfish may explain these trends. These mesopredators, and adult toothfish, all prey heavily on Antarctic silverfish (Pleuragramma antarcticum). Toothfish removal may be altering intraguild predation dynamics, leading to competitive release of silverfish and contributing to penguin and seal population changes. Despite decades of ocean/weather change, increases in indicator species numbers around Ross Island only began once the toothfish fishery commenced. The rational-use, ecosystem-based viewpoint promoted by CCAMLR regarding toothfish management needs re-evaluation, including in the context of the Ross Sea Region MPA.more » « less
An official website of the United States government

