skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Membrane aging effects on water recovery during full-scale potable reuse: mathematical optimization of backwashing frequency for constant-flux microfiltration
One tool in efforts to tackle the ever growing problem of water scarcity is municipal wastewater reclamation to produce drinking water. Microfiltration (MF) is a central technology for potable reuse because it is highly effective in removing pathogenic protozoa, bacteria, and other colloids and for reverse osmosis pretreatment. However, as microfiltered materials accumulate at the membrane surface, its productivity is reduced requiring periodic removal of foulants. A mathematical model of MF is described in the context of hollow fiber filtration that focused on optimizing constant flux operation with backwashing. Design curves were also proposed for determining backwash timing. The model analysis is evaluated against real-world MF fouling for membranes that range in age from a few weeks to three years, observed at the world’s largest water reuse facility operated by the Orange County Water District. The presented model compares well with the full-scale operational data, and model parameters accurately capture variations in fouling kinetics with membrane age, providing clues to changes in optimal regeneration timing and frequency as membrane performance declines over long time scales.  more » « less
Award ID(s):
2210992
PAR ID:
10444353
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Separation and purification technology
Volume:
286
Issue:
1
ISSN:
1873-3794
Page Range / eLocation ID:
120294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Short-term microfiltration (MF) fouling is commonly abated by periodically reversing the flow to remove foulants that weakly adhered to the membrane. Strong oxidants (i.e., chlorine) can be added to hydraulic backwash water to augment its efficacy—a process called chemically enhanced backwashing (CEB). Herein, we report a rigorous mathematical model for constant flux MF incorporating hydraulic backwashing and CEB, and validate it with laboratory data obtained using untreated and alum-coagulated water from the Foss Reservoir in Oklahoma, USA. We implemented an optimal control procedure and used it to predict MF behavior long past experimental timescales. We identified a frequency threshold beyond which the necessary transmembrane pressure (TMP) reached an asymptotic value, indicating a pseudo steady-state, periodic solution to the model when coupling hydraulic backwashing with CEB. We report differences in TMP saturation values and timescales by simulating transient MF of untreated and pretreated water. Numerical simulations revealed that the operating flux could be increased 10-fold after pretreatment (compared with raw water) before reaching the maximum manufacturer-recommended pressure for the hollow-fibers. The predicted higher flux and extended duration between cleaning-in-place demonstrated advantages of coagulation pretreatment under hydraulic backwashing and CEB. Model observations could guide decision making for CEB timing and frequency. 
    more » « less
  2. null (Ed.)
    Poultry slaughterhouses produce a large amount of wastewater, which is usually treated by conventional methods. The traditional techniques face some challenges, especially the incapability of recovering valuable nutrients and reusing the treated water. Therefore, membrane technology has been widely adopted by researchers due to its enormous advantages over conventional methods. Pressure-driven membranes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), have been studied to purify poultry slaughterhouse wastewater (PSWW) as a standalone process or an integrated process with other procedures. Membrane technology showed excellent performance by providing high efficiency for pollutant removal and the recovery of water and valuable products. It may remove approximately all the pollutants from PSWW and purify the water to the required level for discharge to the environment and even reuse for industrial poultry processing purposes while being economically efficient. This article comprehensively reviews the treatment and reuse of PSWW with MF, UF, NF, and RO. Most valuable nutrients can be recovered by UF, and high-quality water for reuse in poultry processing can be produced by RO from PSWW. The incredible performance of membrane technology indicates that membrane technology is an alternative approach for treating PSWW. 
    more » « less
  3. To implement sustainable water resource management, the industries that produce a huge amount of wastewater are aiming to recycle wastewater. Reverse osmosis (RO) is an advanced membrane process that can produce potable water from wastewater. However, the presence of diverse pollutants in the wastewater necessitates effective pretreatment to ensure successful RO implementation. This study evaluated the efficiency of microfiltration (MF) and ultrafiltration (UF) as two pretreatment methods prior to RO, i.e., MF-RO and UF-RO, for recycling poultry slaughterhouse wastewater (PSWW). The direct treatment of PSWW with RO (direct RO) was also considered for comparison. In this study, membrane technology serves as a post treatment for PSWW, which was conventionally treated at Sanderson Farm. The results demonstrated that all of the processes, including MF-RO, UF-RO, and direct RO treatment of PSWW, rejected 100% of total phosphorus (TP), over 91.2% of chemical oxygen demand (COD), and 87% of total solids (TSs). Total nitrogen (TN) levels were reduced to 5 mg/L for MF-RO, 4 mg/L for UF-RO, and 9 mg/L for direct RO. In addition, the pretreatment of PSWW with MF and UF increased RO flux from 46.8 L/m2 h to 51 L/m2 h, an increase of approximately 9%. The product water obtained after MF-RO, UF-RO, and direct RO meets the required potable water quality standards for recycling PSWW in the poultry industry. A cost analysis demonstrated that MF-RO was the most economical option among membrane processes, primarily due to MF operating at a lower pressure and having a high water recovery ratio. In contrast, the cost of using RO without MF and UF pretreatments was approximately 2.6 times higher because of cleaning and maintenance expenses related to fouling. This study concluded that MF-RO is a preferable option for recycling PSWW. This pretreatment method would significantly contribute to environmental sustainability by reusing well-treated PSWW for industrial poultry purposes while maintaining cost efficiency. 
    more » « less
  4. One of the biggest challenges for direct contact membrane distillation (DCMD) in treating wastewater from flue gas desulfurization (FGD) is the rapid deterioration of membrane performance resulting from precipitate fouling. Chemical pretreatment, such as lime-soda ash softening, has been used to mitigate the issue, however, with significant operating costs. In this study, mechanical vibration of 42.5 Hz was applied to lab-scale DCMD systems to determine its effectiveness of fouling control for simulated FGD water. Liquid entry pressure and mass transfer limit of the fabricated hollow fiber membranes were determined and used as the operational constraints in the fouling experiments so that the observed membrane performance was influenced solely by precipitate fouling. Minimal improvement of water flux was observed when applying vibration after significant (~16%) water-flux decline. Initiating vibration at the onset of the experiments prior to the exposure of foulants, however, was promising for the reduction of membrane fouling. The water-flux decline rate was reduced by about 50% when compared to the rate observed without vibration. Increasing the module packing density from 16% to 50% resulted in a similar rate of water-flux decline, indicating that the fouling propensity was not increased with packing density in the presence of vibration. 
    more » « less
  5. Organic solvent filtration is an important industrial process. It is widely used in pharmaceutical manufacturing, chemical processing industry, semiconductor industry, auto assembly etc. Most of the particle filtration studies reported in open literature dealt with aqueous suspension medium. The current work has initiated a study of cross-flow solvent filtration behavior of microporous ethylene chlorotrifluoroethylene (ECTFE) membranes using 12 nm silica nanoparticles suspended in an aqueous solution containing 25% ethanol. In the constant pressure mode of operation of cross-flow microfiltration (MF), permeate samples were collected at different time intervals. The permeate particle size distribution (PSD) results for different experiments were identical. Particle agglomerates having less than 100 nm size can pass through the membrane; some fouling was observed. The governing fouling mechanisms for tests operated using 3.8×10−3 kg/m3 (3.8 ppm) at 6.9×103 Pag and 1.4×104 Pag were pore blocking. For tests conducted using 3.8×10−3 kg/m3 (3.8 ppm) at 27.6×103 Pag (4 psig) and 1.9×10−3 kg/m3 (1.9 ppm) at 6.9×103, 13.8×103 and 27.6×103 Pag (1, 2 and 4 psig), the mechanism was membrane resistance control. Less particles got embedded in membrane pores in experiments operated using suspensions with lower or higher particle concentrations with a higher transmembrane pressure. This is in good agreement with the values of the shear rate in the pore flow and scanning electron microscope images of the membrane after MF. In the dead-end mode of operation of solvent filtration using methanol, ethanol and 2-propanol, the permeate flux behavior follows Jmethanol > Jethanol > J2-propanol at all testing pressures. The values of permeance (kg/m2-s-Pa) determined from the slope of the linear plot of filtration flux vs. the applied pressure difference across the membrane, were 3.9×10−4, 2.3×10−4 and 3.0×10−5 for methanol, ethanol and 2-propanol, respectively. Further exploration was made on solvent sorption results reported earlier. The critical temperature of selected solvents shows a better correlation with solvent sorption rather than the solubility parameter. 
    more » « less