skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thin spectra and singular continuous spectral measures for limit‐periodic Jacobi matrices
Abstract This paper investigates the spectral properties of Jacobi matrices with limit‐periodic coefficients. We show that generically the spectrum is a Cantor set of zero Lebesgue measure, and the spectral measures are purely singular continuous. For a dense set of limit‐periodic Jacobi matrices, we show that the spectrum is a Cantor set of zero lower box counting dimension while still retaining the singular continuity of the spectral type. We also show how results of this nature can be established by fixing the off‐diagonal coefficients and varying only the diagonal coefficients, and, in a more restricted version, by fixing the diagonal coefficients to be zero and varying only the off‐diagonal coefficients. We apply these results to produce examples of weighted Laplacians on the multidimensional integer lattice having purely singular continuous spectral type and zero‐dimensional spectrum.  more » « less
Award ID(s):
2213196
PAR ID:
10444402
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Mathematische Nachrichten
ISSN:
0025-584X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. From the general inverse theory of periodic Jacobi matrices, it is known that a periodic Jacobi matrix of minimal period p≥2 may have at most p−2 closed spectral gaps. We discuss the maximal number of closed gaps for one-dimensional periodic discrete Schrödinger operators of period p. We prove nontrivial upper and lower bounds on this quantity for large p and compute it exactly for p≤6. Among our results, we show that a discrete Schrödinger operator of period four or five may have at most a single closed gap, and we characterize exactly which potentials may exhibit a closed gap. For period six, we show that at most two gaps may close. In all cases in which the maximal number of closed gaps is computed, it is seen to be strictly smaller than p−2, the bound guaranteed by the inverse theory. We also discuss similar results for purely off-diagonal Jacobi matrices. 
    more » « less
  2. We consider standard and extended CMV matrices with small quasi-periodic Verblunsky coefficients and show that on their essential spectrum, all spectral measures are purely absolutely continuous. This answers a question of Barry Simon from 2005. 
    more » « less
  3. Abstract The main result of this paper is a complete proof of a new Lieb–Thirring-type inequality for Jacobi matrices originally conjectured by Hundertmark and Simon. In particular, it is proved that the estimate on the sum of eigenvalues does not depend on the off-diagonal terms as long as they are smaller than their asymptotic value. An interesting feature of the proof is that it employs a technique originally used by Hundertmark–Laptev–Weidl concerning sums of singular values for compact operators. This technique seems to be novel in the context of Jacobi matrices. 
    more » « less
  4. Abstract We investigate the symmetries of the so-called generalized extended Cantero–Moral–Velázquez (CMV) matrices. It is well-documented that problems involving reflection symmetries of standard extended CMV matrices can be subtle. We show how to deal with this in an elegant fashion by passing to the class of generalized extended CMV matrices via explicit diagonal unitaries in the spirit of Cantero–Grünbaum–Moral–Velázquez. As an application of these ideas, we construct an explicit family of almost-periodic CMV matrices, which we call the mosaic unitary almost-Mathieu operator, and prove the occurrence of exact mobility edges. That is, we show the existence of energies that separate spectral regions with absolutely continuous and pure point spectrum and exactly calculate them. 
    more » « less
  5. We consider a quantum graph as a model of graphene in magnetic fields and give a complete analysis of the spectrum, for all constant fluxes. In particular, we show that if the reduced magnetic flux $$\Phi/2\pi$$ through a honeycomb is irrational, the continuous spectrum is an unbounded Cantor set of Lebesgue measure zero. 
    more » « less