Phenotypic plasticity is defined as a property of individual genotypes to produce different phenotypes when exposed to different environmental conditions. This ability may be expressed at behavioral, biochemical, physiological, and/or developmental levels, exerting direct influence over species' demographic performance. In reef-building corals, a group critically threatened by global change in the Anthropocene, non-genetic mechanisms (i.e., epigenetic and microbiome variation) have been shown to participate in plastic physiological responses to environmental change. Yet, the precise way in which these mechanisms interact, contribute to such responses, and their adaptive potential is still obscure. The present work aims to fill this gap by using a multi-omics approach to elucidate the contribution and interconnection of the mechanisms modulating phenotypic plasticity in staghorn coral (Acropora cervicornis) clones subject to different depth conditions. Results show changes in lipidome, epigenome and transcriptome, but not in symbiotic and microbial communities. In addition, a potential shift toward a more heterotrophic feeding behavior was evidenced in corals at the deeper site. These observations are consistent with a multi-mechanism modulation of rapid acclimation in corals, underscoring the complexity of this process and the importance of a multifactorial approach to inform potential intervention to enhance coral adaptive capacity.
more »
« less
Relationships between phenotypic plasticity and epigenetic variation in two Caribbean Acropora corals
Abstract The plastic ability for a range of phenotypes to be exhibited by the same genotype allows organisms to respond to environmental variation and may modulate fitness in novel environments. Differing capacities for phenotypic plasticity within a population, apparent as genotype by environment interactions (GxE), can therefore have both ecological and evolutionary implications. Epigenetic gene regulation alters gene function in response to environmental cues without changes to the underlying genetic sequence and likely mediates phenotypic variation. DNA methylation is currently the most well described epigenetic mechanism and is related to transcriptional homeostasis in invertebrates. However, evidence quantitatively linking variation in DNA methylation with that of phenotype is lacking in some taxa, including reef‐building corals. In this study, spatial and seasonal environmental variation in Bonaire, Caribbean Netherlands was utilized to assess relationships between physiology and DNA methylation profiles within genetic clones across different genotypes ofAcropora cervicornisandA. palmatacorals. The physiology of both species was highly influenced by environmental variation compared to the effect of genotype. GxE effects on phenotype were only apparent inA. cervicornis. DNA methylation in both species differed between genotypes and seasons and epigenetic variation was significantly related to coral physiological metrics. Furthermore, plastic shifts in physiology across seasons were significantly positively correlated with shifts in DNA methylation profiles in both species. These results highlight the dynamic influence of environmental conditions and genetic constraints on the physiology of two important Caribbean coral species. Additionally, this study provides quantitative support for the role of epigenetic DNA methylation in mediating phenotypic plasticity in invertebrates.
more »
« less
- PAR ID:
- 10444420
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 32
- Issue:
- 17
- ISSN:
- 0962-1083
- Page Range / eLocation ID:
- p. 4814-4828
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hoffmann, Federico (Ed.)Abstract There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.more » « less
-
Acropora Cervicornis Data Coordination Hub, an Open Access Database for Evaluating Genet PerformanceOnce one of the predominant reef-building corals in the region,Acropora cervicornisis now a focal species of coral restoration efforts in Florida and the western Caribbean. Scientists and restoration practitioners have been independently collecting phenotypic data on genets ofA. cervicornisgrown in restoration nurseries. While these data are important for understanding the intraspecific response to varying environmental conditions, and thus the potential genetic contribution to phenotypic variation, in isolation these observations are of limited use for large-scale, multi- institution restoration efforts that are becoming increasingly necessary. Here, we present theAcropora cervicornisData Coordination Hub, a web-accessible relational database to align disparate datasets to compare genet-specific performance. In this data descriptor, we release data for 248 genets evaluated across 38 separate traits. We present a framework to align datasets with the ultimate goal of facilitating informed, data-driven restoration throughout the Caribbean.more » « less
-
White band disease (WBD) has caused unprecedented declines in the CaribbeanAcroporacorals, which are now listed as critically endangered species. Highly disease-resistantAcropora cervicornisgenotypes exist, but the genetic underpinnings of disease resistance are not understood. Using transmission experiments, a newly assembled genome, and whole-genome resequencing of 76A. cervicornisgenotypes from Florida and Panama, we identified 10 genomic regions and 73 single-nucleotide polymorphisms that are associated with disease resistance and that include functional protein-coding changes in four genes involved in coral immunity and pathogen detection. Polygenic scores calculated from 10 genomic loci indicate that genetic screens can detect disease resistance in wild and nursery stocks ofA. cervicornisacross the Caribbean.more » « less
-
Abstract Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern United States, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12°C temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world.more » « less