skip to main content


Title: Advancing Tropical Cyclone Precipitation Forecast Verification Methods and Tools
Abstract

Tropical cyclone (TC) forecast verification techniques have traditionally focused on track and intensity, as these are some of the most important characteristics of TCs and are often the principal verification concerns of operational forecast centers. However, there is a growing need to verify other aspects of TCs as process-based validation techniques may be increasingly necessary for further track and intensity forecast improvements as well as improving communication of the broad impacts of TCs including inland flooding from precipitation. Here we present a set of TC-focused verification methods available via the Model Evaluation Tools (MET) ranging from traditional approaches to the application of storm-centric coordinates and the use of feature-based verification of spatially defined TC objects. Storm-relative verification using observed and forecast tracks can be useful for identifying model biases in precipitation accumulation in relation to the storm center. Using a storm-centric cylindrical coordinate system based on the radius of maximum wind adds additional storm-relative capabilities to regrid precipitation fields onto cylindrical or polar coordinates. This powerful process-based model diagnostic and verification technique provides a framework for improved understanding of feedbacks between forecast tracks, intensity, and precipitation distributions. Finally, object-based verification including land masking capabilities provides even more nuanced verification options. Precipitation objects of interest, either the central core of TCs or extended areas of rainfall after landfall, can be identified, matched to observations, and quickly aggregated to build meaningful spatial and summary verification statistics.

 
more » « less
PAR ID:
10444498
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Weather and Forecasting
Volume:
38
Issue:
9
ISSN:
0882-8156
Page Range / eLocation ID:
p. 1589-1603
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Saharan dust exerts profound impacts on the genesis and intensification of tropical cyclones (TCs). Such impacts on various stages of the TCs have yet to be explored. In this study, we utilize the Cloud‐Resolving weather research and forecasting model (WRF) to investigate the relative importance of the microphysical and radiative effects of dust on two hurricanes (Earl and Danielle) at different life stages under similar dynamical conditions in 2010. Both TCs were embedded in a dusty environment throughout their lifetime. A new dust ice nucleation scheme was implemented into the aerosol‐aware Texas A&M University two‐moment microphysical scheme in WRF. Moreover, the dust radiative effect was included in the Goddard Shortwave Scheme of WRF. Our sensitivity experiments show that the radiative effect of dust (DRAD) amplified the mid‐level ridge in the Central Atlantic Ocean through temperature perturbation, changing the tracks of Danielle and Earl. Further analyses reveal an early shift of Danielle's maximum intensity for 12 hours but a significantly suppressed Earl in DRAD. In addition, the microphysical effect of dust had little impact on the large‐scale dynamical fields and storm tracks. The inclusion of dust as ice nucleation particles results in more variations in the intensity of Danielle and Earl than in other scenarios. This is owing to the higher maximum diabatic heating rate in the rainband region that perturbs the size of the TC. This study shows the dominant dust radiative effects on both intensity and track of the storm. In addition, there is evidence that dust suppresses the early stage TC but provides favorable conditions for matured TC. Both findings have profound implications for hurricane forecast and address the importance of accounting for detailed cloud microphysics and aerosol‐TC interactions in the operational forecasting models.

     
    more » « less
  2. Abstract

    Ensemble‐based data assimilation of radar observations across inner‐core regions of tropical cyclones (TCs) in tandem with satellite all‐sky infrared (IR) radiances across the TC domain improves TC track and intensity forecasts. This study further investigates potential enhancements in TC track, intensity, and rainfall forecasts via assimilation of all‐sky microwave (MW) radiances using Hurricane Harvey (2017) as an example. Assimilating Global Precipitation Measurement constellation all‐sky MW radiances in addition to GOES‐16 all‐sky IR radiances reduces the forecast errors in the TC track, rapid intensification (RI), and peak intensity compared to assimilating all‐sky IR radiances alone, including a 24‐hr increase in forecast lead‐time for RI. Assimilating all‐sky MW radiances also improves Harvey's hydrometeor fields, which leads to improved forecasts of rainfall after Harvey's landfall. This study indicates that avenues exist for producing more accurate forecasts for TCs using available yet underutilized data, leading to better warnings of and preparedness for TC‐associated hazards in the future.

     
    more » « less
  3. Abstract

    The meteorology community primarily assesses tropical cyclone (TC) forecast skill using track and intensity errors. These metrics are frequently uncorrelated and can offer conflicting information about model performance. Continued improvements in intensity forecasting require improved representation of physical processes over multiple scales, and model verification of TC spatial structure can contribute to these improvements. To date, there are limited studies into forecast model representation of wind fields. More work is needed to better understand model deficiencies in skillfully predicting TC size metrics. In this study, we demonstrate an object‐based approach that can reveal structural differences in TC wind fields. Object‐based methods have been underutilized, and these methods, along with spatial metrics, can serve as additional verification methods for assessing storm structure in both observations and model simulations. Specifically, we illustrate this approach by examining a major difference between the Tiedtke and Kain–Fritsch cumulus parametrization schemes: The Tiedtke scheme includes convective momentum transport while the Kain–Fritsch scheme does not. We create three experiments of Hurricane Isabel (2003) using the Weather Research and Forecasting model using the Kain–Fritsch and Tiedtke cumulus parametrization schemes and an altered Tiedtke scheme with convective momentum transport turned off. Within the three experiments, we generate a small ensemble of four simulations to avoid drawing erroneous conclusions due to growth of numerical noise. Then, we use object‐based methods to measure and compare spatial attributes of the low‐level wind fields to confirm the dominant influence of momentum transport in influencing the TC spatial structure. Our spatial metric approach offers an objective suite of structural attributes that could be useful in diverse applications. A future goal is to use spatial metrics in systematic verification studies of TCs in operational model forecasts and climate model simulations, which may offer great benefit to operational forecasters and numerical model developers.

     
    more » « less
  4. Abstract

    Tropical cyclones (TCs) are one of the greatest threats to coastal communities along the US Atlantic and Gulf coasts due to their extreme wind, rainfall and storm surge. Analyzing historical TC climatology and modeling TC hazards can provide valuable insight to planners and decision makers. However, detailed TC size information is typically only available from 1988 onward, preventing accurate wind, rainfall, and storm surge modeling for TCs occurring earlier in the historical record. To overcome temporally limited TC size data, we develop a database of size estimates that are based on reanalysis data and a physics‐based model. Specifically, we utilize ERA5 reanalysis data to estimate the TC outer size, and a physics‐based TC wind model to estimate the radius of maximum wind. We evaluate our TC size estimates using two high‐resolution wind data sets as well as Best Track information for a wide variety of TCs. Using the estimated size information plus the TC track and intensity, we reconstruct historical storm tides from 1950 to 2020 using a basin‐scale hydrodynamic model and show that our reconstructions agree well with observed peak storm tide and storm surge. Finally, we demonstrate that incorporating an expanded set of historical modeled storm tides beginning in 1950 can enhance our understanding of US coastal hazard. Our newly developed database of TC sizes and associated storm tides/surges can aid in understanding North Atlantic TC climatology and modeling TC wind, storm surge, and rainfall hazard along the US Atlantic and Gulf coasts.

     
    more » « less
  5. Abstract In a recent study by Wang et al. that introduced a dynamical efficiency to the intensification potential of a tropical cyclone (TC) system, a simplified energetically based dynamical system (EBDS) model was shown to be able to capture the intensity dependence of TC potential intensification rate (PIR) in both idealized numerical simulations and observations. Although the EBDS model can capture the intensity dependence of TC intensification as in observations, a detailed evaluation has not yet been done. This study provides an evaluation of the EBDS model in reproducing the intensity-dependent feature of the observed TC PIR based on the best track data for TCs over the North Atlantic and central, eastern, and western North Pacific during 1982–2019. Results show that the theoretical PIR estimated by the EBDS model can capture basic features of the observed PIR reasonably well. The TC PIR in the best track data increases with increasing relative TC intensity [intensity normalized by its corresponding maximum potential intensity (MPI)] and reaches a maximum at an intermediate relative intensity around 0.6, and then decreases with increasing relative intensity to zero as the TC approaches its MPI, as in idealized numerical simulations. Results also show that the PIR for a given relative intensity increases with the increasing MPI and thus increasing sea surface temperature, which is also consistent with the theoretical PIR implied by the EBDS model. In addition, future directions to include environmental effects and make the EBDS model applicable to predict intensity change of real TCs are also discussed. 
    more » « less