Abstract We study the variations of the topside ionospheric ion density measured by Defense Meteorological Satellite Program satellites during the intense magnetic storm on 7–10 November 2004. It is found for the first time that quasi‐periodic enhancements in the ion density with a period of ∼6 hr occur nearly simultaneously at 0630, 0830, and 0930 local time in the dawn sector during the storm main phase with southward interplanetary magnetic field (IMF). The quasi‐periodic density enhancements extend from the southern subauroral latitudes to the northern subauroral latitudes. In the dusk sector, the topside ion density during the storm main phase is increased at middle latitudes for ∼12 hr but shows decrease or relatively small increase over the magnetic equator, indicating that penetration electric fields dominate the ion density redistribution. Similar quasi‐periodic enhancements in the topside ion density are also observed in the dawn sector during other intense magnetic storms. The solar wind and IMF do not have quasi‐periodic variations in this storm case. Periodic processes in geospace, such as periodic substorms in the magnetosphere, waves and tides in the atmosphere, and traveling ionospheric disturbances, cannot explain the observed periodic enhancements of the ionospheric ion density. We suggest that the magnetosphere‐ionospheric‐thermospheric system may have an intrinsic period of ∼6 hr and that oscillations of the magnetosphere‐ionospheric‐thermospheric system with this period can be excited during intense magnetic storms, although the mechanisms for the generation of the long‐periodic oscillations are not understood.
more »
« less
Behaviors of Ionospheric Topside Ion Density, Ion Temperature, and Electron Temperature During the 20 November 2003 Superstorm
Abstract We identified a few new storm‐time ionospheric phenomena by analyzing disturbances in topside ion density, electron temperature, and ion temperature at ∼840 km altitude measured by theDefense Meteorological Satellite Programsatellites during the 20 November 2003 magnetic storm. The storm‐time ion density enhancements showed different features at different local times. Longitudinal structures in the enhanced ion density occurred in the morning sector and extended from equatorial regions to middle latitudes. Ion density increase due to enhanced fountain effect was observed in the evening sector and lasted for ∼18 hr. A positive ionospheric storm occurred during the late recovery phase of the storm and was associated with increased atomic oxygen to molecular nitrogen column density ratio. Electron temperature at subauroral latitudes reached 8000 K during the storm, ∼4000 K higher than the quiet‐time temperature. The subauroral temperature enhancement lasted for 2–3 days. Simultaneous enhancements in the ion density, electron temperature, and ion temperature from subauroral to equatorial latitudes occurred in the night‐time ionosphere and lasted for ∼18 hr. A negative correlation between ion density and electron/ion temperature variations occurred in the dusk sector for ∼12 hr. An enhanced ion temperature crest in the winter hemisphere during the magnetic storm lasted for 2 days. A decrease in the ion temperature crest was also observed with an increase of the ion density. These new features in the ionospheric density and temperature, together with the results from previous studies, provide a more comprehensive scenario of the ionospheric response to the superstorm.
more »
« less
- Award ID(s):
- 2033843
- PAR ID:
- 10444534
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 127
- Issue:
- 8
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We have used measurements of the Defense Meteorological Satellite Program (DMSP) satellites to study variations of electron temperature in the subauroral ionosphere during the magnetic storm on 17–25 March 2015. This magnetic storm had a long recovery phase of 7 days, and the ionospheric behavior over the entire storm time was seldom investigated. In this study, we find that the electron temperature at subauroral latitudes was continuously enhanced for 8 days, from the storm onset to the end of the recovery phase. The maximum electron temperature during the storm times was 1000–4000 K higher than the maximum electron temperature during quiet times. This long‐lasting enhancement of subauroral electron temperature was attributed to energy transfer among the solar wind, magnetosphere, ring current, plasmasphere, and ionosphere driven by high‐speed solar wind streams and fluctuating interplanetary magnetic field during the entire 8‐day period of the storm. The electron temperature enhancements were quite symmetric in the post‐midnight sector but became strongly asymmetric near dawn between the southern and northern hemispheres. The asymmetric enhancements of electron temperature near dawn may be related to the magnetic declination and the daytime midlatitude trough in the southern hemisphere. Large daily variations of maximum electron temperature in the post‐midnight sector were observed and may be related to the offset between geomagnetic and geographic latitudes. These DMSP observations provide new insight on ionospheric response to intense magnetic storms.more » « less
-
Abstract This work investigates mid‐ and low‐latitude ionospheric disturbances over the American sector during a moderate but geo‐effective geomagnetic storm on 13–14 March 2022 (π‐Day storm), using ground‐based Global Navigation Satellite System total electron content data, ionosonde observations, and space‐borne measurements from the Global‐scale Observations of Limb and Disk (GOLD), Swarm, the Defense Meteorological Satellite Program (DMSP), and the Ionospheric Connection Explorer (ICON) satellites. Our results show that this modest but geo‐effective storm created a number of large ionospheric disturbances, especially the dynamic multi‐scale electron density gradient features in the storm main phase as follows: (a) The low‐latitude equatorial ionization anomaly (EIA) exhibited a dramatic storm‐time deformation and reformation, where the EIA crests evolved into a bright equatorial band for 1–2 hr and then quickly separated back into the typical double‐crest structure with a broad crest width and deep equatorial trough. (b) Strong equatorial plasma bubbles (EPBs) occurred with an abnormally high latitude/altitude extension, reaching the geomagnetic latitude of ∼30°, corresponding to an Apex height of 2,600 km above the dip equator. (c) The midlatitude ionosphere experienced a conspicuous storm‐enhanced density (SED) plume structure associated with the subauroral polarization stream (SAPS). This SED/SAPS feature showed an unusual temporal variation that intensified and diminished twice. These distinct mid‐ and low‐latitude ionospheric disturbances could be attributed to the storm‐time electrodynamic effect of electric field perturbation, along with contributions from neutral dynamics and thermospheric composition change.more » « less
-
Abstract This paper conducts a multi‐instrument analysis and data assimilation study of midlatitude ionospheric disturbances over the European and North American longitude sectors during a strong geomagnetic storm on 26–28 February 2023. The study uses a set of ground‐based (GNSS receivers, ionosondes) observations, space‐borne (DMSP, GOLD) measurements, and a new TEC‐based ionospheric data assimilation system (TIDAS). We observed a series of distinct storm‐time features with regard to storm‐enhanced density (SED) and subauroral polarization stream (SAPS) as follows: (a) Under multiple ring current intensifications, the storm‐time subauroral ionosphere produced long‐lasting duskside SAPS for ∼36 hr along with considerable dawnside SAPS for several hours. (b) Associated with long‐lived SAPS, strong SED occurred consecutively in the European longitude sector near local noon during a positive ionospheric storm and later in the North American longitude sector near local dusk during a negative ionospheric storm. (c) The 3‐D morphology of SED in multiple longitude sectors was reconstructed using TIDAS data assimilation technique with fine‐scale details, which revealed a narrow ionospheric plasma channel with electron density enhancement and layer uplift.more » « less
-
Abstract This study provides first storm time observations of the westward‐propagating medium‐scale traveling ionospheric disturbances (MSTIDs), particularly, associated with characteristic subauroral storm time features, storm‐enhanced density (SED), subauroral polarization stream (SAPS), and enhanced thermospheric westward winds over the continental US. In the four recent (2017–2019) geomagnetic storm cases examined in this study (i.e., 2018‐08‐25/26, 2017‐09‐07/08, 2017‐05‐27/28, and 2016‐02‐02/03 with minimum SYM‐H index −206, −146, −142, and −58 nT, respectively), MSTIDs were observed from dusk‐to‐midnight local times predominately during the intervals of interplanetary magnetic field (IMF) Bz stably southward. Multiple wavefronts of the TIDs were elongated NW‐SE, 2°–3° longitude apart, and southwestward propagated at a range of zonal phase speeds between 100 and 300 m/s. These TIDs initiated in the northeastern US and intensified or developed in the central US with either the coincident SED structure (especially the SED basis region) or concurrent small electron density patches adjacent to the SED. Observations also indicate coincident intense storm time electric fields associated with the magnetosphere–ionosphere–thermosphere coupling electrodynamics at subauroral latitudes (such as SAPS) as well as enhanced thermospheric westward winds. We speculate that these electric fields trigger plasma instability (with large growth rates) and MSTIDs. These electrified MSTIDs propagated westward along with the background westward ion flow which resulted from the disturbance westward wind dynamo and/or SAPS.more » « less