skip to main content


Title: Numerical Simulation of Cool Hydrothermal Processes in the Upper Volcanic Crust Beneath a Marine Sediment Pond: North Pond, North Atlantic Ocean
Abstract

Low temperature hydrothermal systems hosted in the volcanic oceanic crust are responsible for ∼20% of Earth's global heat loss. Marine sediment ponds comprise an important type setting on young ridge flanks where hydrothermal circulation advectively extracts lithospheric heat, but the nature of coupled fluid‐heat transport in these settings remains poorly understood. Here we present coupled (fluid‐heat) numerical simulations of ocean crustal hydrogeology in and below North Pond, a sediment pond on ∼8 Ma seafloor of the North Atlantic Ocean. Two‐ and three‐dimensional simulations show that advective transport beneath North Pond is complex and time varying, with multiple spatial and temporal scales, consistent with seafloor and borehole observations. A unidirectional, single‐pass flow system is neither favored nor needed to match the spatial distribution of seafloor heat flux through North Pond sediments. When the permeability of the crustal aquifer is relatively high (10−10–10−9 m2), simulations can replicate much of the observed variability and suppression of seafloor heat flux and can explain basement overpressures and transient perturbations in pressure and temperature in the upper volcanic crust. Simulation results can also help explain heterogeneity in pore fluid chemistry and microbiology in the crust. Although driven by the same physical processes, the dynamics of hydrothermal circulation below North Pond are different from those seen on discharge‐dominated ridge flanks, where the permeability and exposed area of isolated basement outcrops control the extent of regional heat extraction.

 
more » « less
NSF-PAR ID:
10444542
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
127
Issue:
1
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Basement formation pressures and temperatures were recorded from 1997 to 2017 in four sealed‐hole observatories in North Pond, an isolated ∼8 × 15 km sediment pond surrounded by thinly sedimented basement highs in 7–8 Ma crust west of the Mid‐Atlantic Ridge at ∼23°N. Two observatories are located ∼1 km from the southeastern edge of North Pond where sediment thickness is ∼90 m; the other two are ∼1 km from the northeastern edge where sediment thickness is 40–50 m. Sediments are up to 200 m thicker in the more central part of the pond. The borehole observations, along with upper basement temperatures estimated from seafloor heat flux measurements, provide constraints on the nature of low‐temperature ridge‐flank hydrothermal circulation in a setting that may be typical of sparsely sedimented crust formed at slow spreading ridges. Relative to seafloor pressures, basement formation pressures are modestly positive and increase with depth, except for a slight negative differential pressure in the shallowest 30–40 m in one northeastern hole. Although the observatory pairs are ∼6 km apart, the lateral pressure gradient in basement between them is very small. Formation pressure responses to seafloor tidal loading are consistent with high basement permeability that allows for vigorous low‐temperature circulation with low lateral pressure gradients. In contrast, there is significant lateral variability in upper basement temperatures, with highest values of ∼12.5°C beneath the thickly sedimented southwest section, lower values near the edges, and lowest values near the southeast edge. The results are key to assessing past and recent models for the circulation system.

     
    more » « less
  2. The South Atlantic Transect (SAT) is a multidisciplinary scientific ocean drilling experiment designed to investigate the evolution of the ocean crust and overlying sediments across the western flank of the Mid-Atlantic Ridge. This project comprises four International Ocean Discovery Program expeditions: fully staffed Expeditions 390 and 393 (April–August 2022) built on engineering preparations during Expeditions 390C and 395E (October–December 2020 and April–June 2021, respectively) that took place without science parties during the height of the Coronavirus Disease 2019 (COVID-19) pandemic. Through operations along a crustal flow line at ~31°S, the SAT recovered complete sedimentary sections and the upper ~40–340 m of the underlying ocean crust formed at a slow- to intermediate-spreading rate at the Mid-Atlantic Ridge over the past ~61 My. The sediments along this transect were originally spot cored more than 50 y ago during Deep Sea Drilling Project Leg 3 (December 1968–January 1969) to help verify the theories of seafloor spreading and plate tectonics. The SAT expeditions targeted six primary sites on 7, 15, 31, 49, and 61 Ma ocean crust that fill critical gaps in our sampling of intact in situ ocean crust with regard to crustal age, spreading rate, and sediment thickness. Drilling these sites was required to investigate the history, duration, and intensity of the low-temperature hydrothermal interactions between the aging ocean crust and the evolving South Atlantic Ocean. This knowledge will improve the quantification of past hydrothermal contributions to global biogeochemical cycles and help develop a predictive understanding of the impacts of variable hydrothermal processes and exchanges. Samples from the transect of the previously unexplored sediment- and basalt-hosted deep biosphere beneath the South Atlantic Gyre are essential to refine global biomass estimates and examine microbial ecosystems' responses to variable conditions in a low-energy gyre and aging ocean crust. The transect, located near World Ocean Circulation Experiment Line A10, provides records of carbonate chemistry and deepwater mass properties across the western South Atlantic through key Cenozoic intervals of elevated atmospheric CO2 and rapid climate change. Reconstruction of the history of the deep western boundary current and deepwater formation in the Atlantic basins will yield crucial data to test hypotheses regarding the role of evolving thermohaline circulation patterns in climate change and the effects of tectonic gateways and climate on ocean acidification. During engineering Expeditions 390C and 395E (5 October–5 December 2020 and 6 April–6 June 2021, respectively), a single hole was cored through the sediment cover and into the uppermost rocks of the ocean crust with the advanced piston corer and extended core barrel systems at five of the six primary proposed SAT sites. Reentry systems with casing were then installed either into basement or within 10 m of basement at each of those five sites. Expedition 390 (7 April–7 June 2022) conducted operations at three of the SAT sites, recovering 700 m of core (77% recovery) over 30.3 days of on-site operations. Sediment coring, basement coring, and wireline logging were conducted at two sites on ~61 Ma crust (Sites U1556 and U1557), and sediment coring was completed at the 7 Ma Site U1559. During Expedition 390, more than 1.2 km of sediments was characterized, including 793 m of core collected during Expeditions 390C and 395E at Sites U1556, U1557, and U1559 as well as Expedition 395E Site U1561, which was cored on thinly (<50 m) sedimented ~61 Ma crust. The uppermost ~342 and ~120 m of ~61 Ma ocean crust was cored at Sites U1556 and U1557, respectively. Geophysical wireline logging was achieved at both sites, but the basement hole at Site U1556 was not preserved as a legacy hole because of subsidence of the reentry cone below the seafloor. At Site U1557, the drill bit was deposited on the seafloor prior to downhole logging, leaving Hole U1557D available for future deepening and establishing a legacy borehole for basement hydrothermal and microbiological experiments. Expedition 393 (7 June–7 August 2022) operated at four sites, drilling in 12 holes to complete this initial phase of the SAT. Complete sedimentary sections were collected at Sites U1558, U1583, and U1560 on 49, 31, and 15 Ma crust, respectively, and together with 257.7 m of sediments cored during earlier operations, more than 600 m of sediments was characterized. The uppermost ocean crust was drilled at Sites U1558, U1560, and U1583 with good penetration (~130 to ~204 meters subbasement); however, at the youngest ~7 Ma Site U1559, only ~43 m of basement penetration was achieved in this initial attempt. Geophysical wireline logs were achieved at Sites U1583 and U1560 only. Expeditions 390 and 393 established legacy sites available for future deepening and downhole basement hydrothermal and microbiological experiments at Sites U1557, U1560, and U1559 on 61, 15, and 7 Ma crust, respectively. Highlights of the SAT expeditions include (1) recovering abundant altered glass, hydrothermal veins, complex breccias, and a wide range of alteration halos in the volcanic sequences of the uppermost ocean crust formed at 7–61 Ma, indicating low-temperature hydrothermal processes and exchanges between seawater and basalts across the western flank of the southern Mid-Atlantic Ridge for millions to tens of millions of years; (2) documenting extended redox gradients from both the seafloor and the sediment/basement interface that indicate significant subsurface fluid flow and may support a diversity of microorganisms and metabolisms; and (3) recovering an almost complete stratigraphic record of the Cenozoic (including the Paleocene/Eocene Thermal Maximum and other key climate events) composed of nannofossil oozes with varying amounts of clay indicating the shoaling and deepening of the calcite compensation depth. 
    more » « less
  3. The South Atlantic Transect (SAT) is a multidisciplinary scientific ocean drilling experiment designed to investigate the evolution of the ocean crust and overlying sediments across the western flank of the Mid-Atlantic Ridge. This project comprises four International Ocean Discovery Program expeditions: fully staffed Expeditions 390 and 393 (April–August 2022) built on engineering preparations during Expeditions 390C and 395E (October–December 2020 and April–June 2021, respectively) that took place without science parties during the height of the Coronavirus Disease 2019 (COVID-19) pandemic. Through operations along a crustal flow line at ~31°S, the SAT recovered complete sedimentary sections and the upper ~40–340 m of the underlying ocean crust formed at a slow- to intermediate-spreading rate at the Mid-Atlantic Ridge over the past ~61 My. The sediments along this transect were originally spot cored more than 50 y ago during Deep Sea Drilling Project Leg 3 (December 1968–January 1969) to help verify the theories of seafloor spreading and plate tectonics. The SAT expeditions targeted six primary sites on 7, 15, 31, 49, and 61 Ma ocean crust that fill critical gaps in our sampling of intact in situ ocean crust with regard to crustal age, spreading rate, and sediment thickness. Drilling these sites was required to investigate the history, duration, and intensity of the low-temperature hydrothermal interactions between the aging ocean crust and the evolving South Atlantic Ocean. This knowledge will improve the quantification of past hydrothermal contributions to global biogeochemical cycles and help develop a predictive understanding of the impacts of variable hydrothermal processes and exchanges. Samples from the transect of the previously unexplored sediment- and basalt-hosted deep biosphere beneath the South Atlantic Gyre are essential to refine global biomass estimates and examine microbial ecosystems' responses to variable conditions in a low-energy gyre and aging ocean crust. The transect, located near World Ocean Circulation Experiment Line A10, provides records of carbonate chemistry and deepwater mass properties across the western South Atlantic through key Cenozoic intervals of elevated atmospheric CO2 and rapid climate change. Reconstruction of the history of the deep western boundary current and deepwater formation in the Atlantic basins will yield crucial data to test hypotheses regarding the role of evolving thermohaline circulation patterns in climate change and the effects of tectonic gateways and climate on ocean acidification. During engineering Expeditions 390C and 395E (5 October–5 December 2020 and 6 April–6 June 2021, respectively), a single hole was cored through the sediment cover and into the uppermost rocks of the ocean crust with the advanced piston corer and extended core barrel systems at five of the six primary proposed SAT sites. Reentry systems with casing were then installed either into basement or within 10 m of basement at each of those five sites. Expedition 390 (7 April–7 June 2022) conducted operations at three of the SAT sites, recovering 700 m of core (77% recovery) over 30.3 days of on-site operations. Sediment coring, basement coring, and wireline logging were conducted at two sites on ~61 Ma crust (Sites U1556 and U1557), and sediment coring was completed at the 7 Ma Site U1559. During Expedition 390, more than 1.2 km of sediments was characterized, including 793 m of core collected during Expeditions 390C and 395E at Sites U1556, U1557, and U1559 as well as Expedition 395E Site U1561, which was cored on thinly (<50 m) sedimented ~61 Ma crust. The uppermost ~342 and ~120 m of ~61 Ma ocean crust was cored at Sites U1556 and U1557, respectively. Geophysical wireline logging was achieved at both sites, but the basement hole at Site U1556 was not preserved as a legacy hole because of subsidence of the reentry cone below the seafloor. At Site U1557, the drill bit was deposited on the seafloor prior to downhole logging, leaving Hole U1557D available for future deepening and establishing a legacy borehole for basement hydrothermal and microbiological experiments. Expedition 393 (7 June–7 August 2022) operated at four sites, drilling in 12 holes to complete this initial phase of the SAT. Complete sedimentary sections were collected at Sites U1558, U1583, and U1560 on 49, 31, and 15 Ma crust, respectively, and together with 257.7 m of sediments cored during earlier operations, more than 600 m of sediments was characterized. The uppermost ocean crust was drilled at Sites U1558, U1560, and U1583 with good penetration (~130 to ~204 meters subbasement); however, at the youngest ~7 Ma Site U1559, only ~43 m of basement penetration was achieved in this initial attempt. Geophysical wireline logs were achieved at Sites U1583 and U1560 only. Expeditions 390 and 393 established legacy sites available for future deepening and downhole basement hydrothermal and microbiological experiments at Sites U1557, U1560, and U1559 on 61, 15, and 7 Ma crust, respectively. Highlights of the SAT expeditions include (1) recovering abundant altered glass, hydrothermal veins, complex breccias, and a wide range of alteration halos in the volcanic sequences of the uppermost ocean crust formed at 7–61 Ma, indicating low-temperature hydrothermal processes and exchanges between seawater and basalts across the western flank of the southern Mid-Atlantic Ridge for millions to tens of millions of years; (2) documenting extended redox gradients from both the seafloor and the sediment/basement interface that indicate significant subsurface fluid flow and may support a diversity of microorganisms and metabolisms; and (3) recovering an almost complete stratigraphic record of the Cenozoic (including the Paleocene/Eocene Thermal Maximum and other key climate events) composed of nannofossil oozes with varying amounts of clay indicating the shoaling and deepening of the calcite compensation depth. 
    more » « less
  4. Abstract

    We use heat flux measurements colocated with seismic reflection profiles over a buried basement high on the Juan de Fuca plate ∼25 km seaward of the deformation front offshore Oregon to test for the presence of hydrothermal circulation in the oceanic crust. We also revisit heat flux data crossing a buried basement high ∼25 km seaward of the deformation front ∼150 km north, offshore Washington. Seafloor heat flux is inversely correlated with sediment thickness, consistent with vigorous hydrothermal circulation in the basement aquifer homogenizing temperatures at the top of the basement. Heat flux immediately above the summit of the basement highs is greater than expected solely from conduction. Fluid seepage at rates of ∼2.6–5.4 cm yr−1in a 1–1.5 km‐wide conduit through ∼800–1,300 m thick sediment sections above these basement highs can explain these observations. Observations of thermally significant fluid seepage through sediment >225 m thick on oceanic crust are unprecedented. High sediment permeability, high fluid overpressure in the basement, or a combination of both is required to drive fluid seepage at the observed rates. We infer that rapid seepage occurs because the basement highs rise above the low permeability basal sediment with their tops protruding into the base of high permeability Nitinat or Astoria Fan sediment. Seepage from basement highs penetrating into the submarine fans can affect the thermal state of crust entering the subduction zone.

     
    more » « less
  5. Abstract

    During expedition MSM37 on the German RV Maria S. Merian, bottom water temperature and sediment temperature profiles were measured in the vicinity of North Pond (western flank of Mid‐Atlantic Ridge) during exploratory dives with Remotely Operated Vehicle Jason II. In addition, push cores were taken at locations with high sediment temperature gradients. We could identify two locations where sediment temperature gradients exceed 1 K/m and bottom water temperatures showed an anomaly of up to 0.04 °C above background. We interpret these observations as clear indication of low‐temperature diffuse venting of fluids that have traveled through the uppermost crust. We can safely assume that the observed phenomena are widespread at ridge flank settings where sediment cover is thin or absent, and hence, we can explain the efficient heat mining on ridge flanks. Due to the difficulties of locating diffuse low‐temperature discharge sites and due to the fact that discharge can occur through thin sediment cover as well as through sediment‐free basement outcrops, it will be very difficult to quantify fluxes of energy and mass from low‐temperature diffuse venting in ridge flank settings; however, thermal anomalies may be used to locate sites of discharge for geochemical, microbial, and hydrologic characterization.

     
    more » « less