We present the average distribution of energetic electrons in Jupiter's plasma sheet and outer radiation belt near the magnetic equator during Juno's first 29 orbits. Juno observed a clear decrease of magnetic field amplitude and enhancement of energetic electron fluxes over 0.1–1,000 keV energies when traveling through the plasma sheet. In the radiation belts, Juno observed pancake‐shaped electron distributions with high fluxes at ∼90° pitch angle and whistler‐mode waves. Our survey indicates that the statistical electron flux at each energy tends to increase from
The physical circulation of the Southern Ocean sets the surface concentration and thus air‐sea exchange of
- PAR ID:
- 10444620
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 19
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract to . The equatorial pitch angle distributions are isotropic or field‐aligned in the plasma sheet and gradually become pancake‐shaped at . The electron phase space density gradients at MeV/G are relatively small at and become positive over , suggesting the dominant role of adiabatic radial transport at higher shells, and the possible loss processes at lower shells. -
Abstract Serendipitous measurements of deep internal wave signatures are evident in oscillatory variations around the background descent rates reported by one model of Deep Argo float. For the 10,045 profiles analyzed here, the average root‐mean‐square of vertical velocity variances,
, from 1,000 m to the seafloor, is 0.0045 m s−1, with a 5%–95% range of 0.0028–0.0067 m s−1. Dominant vertical wavelengths, λ z , estimated from the integrals of lagged autocorrelation sequences have an average value of 757 m, with a 5%–95% range of 493–1,108 m. Bothand λ z exhibit regional variations among and within some deep ocean basins, with generally largerand shorter λ z in regions of rougher bathymetry or stronger deep currents. These correlations are both expected, since largerand shorter λ z should be found near internal wave generation regions. -
Abstract As the abyssal oceans warm, stratification is also expected to change in response. This change may impact mixing and vertical transport by altering the buoyancy flux, internal wave generation, and turbulent dissipation. In this study, repeated surveys of three hydrographic sections in the Southwest Pacific Basin between the 1990s and 2010s are used to estimate the change in buoyancy frequency
. We find that below the °C isotherm, is on average reduced by a scaling factor of , a 12% reduction, per decade that intensifies with depth. At °C, we observe the biggest change: , or a 29% reduction per decade. Within the same period, the magnitude of vertical diffusive heat flux is also reduced by about , although this estimate is sensitive to the choice of estimated diffusivity. Finally, implications of these results for the heat budget and global ocean circulation are qualitatively discussed. -
Abstract Global ocean mean salinity
is a key indicator of the Earth's hydrological cycle and the exchanges of freshwater between land and ocean, but its determination remains a challenge. Aside from traditional methods based on gridded salinity fields derived from in situ measurements, we explore estimates of based on liquid freshwater changes derived from space gravimetry data corrected for sea ice effects. For the 2005–2019 period analyzed, the different series show little consistency in seasonal, interannual, and long‐term variability. In situ estimates show sensitivity to choice of product and unrealistic variations. A suspiciously large rise in since ∼2015 is enough to measurably affect halosteric sea level estimates and can explain recent discrepancies in the global mean sea level budget. Gravimetry‐based estimates are more realistic, inherently consistent with estimated freshwater contributions to global mean sea level, and provide a way to calibrate the in situ estimates. -
Abstract Cadmium (Cd) is a trace metal whose distribution in the ocean bears a remarkable resemblance to the nutrient phosphate (PO43−). This resemblance has led to the use of Cd as a proxy for ocean nutrient cycling in paleoceanographic applications, but the processes governing the cycling of Cd in the modern ocean remain unclear. In this study, we use previously published Cd observations and an Artificial Neural Network to produce a dissolved Cd climatology that reproduces the observed subtle deviations between the Cd and
distributions. We use the Cd and climatologies, along with an ocean circulation inverse model, to diagnose the biogeochemical sources and sinks of dissolved Cd and . Our calculations reveal that dissolved Cd, like , is removed in the surface ocean and has a source in the subsurface, consistent with the simultaneous incorporation of Cd and into sinking organic particles. However, there are also contrasts between the cycling of dissolved Cd and In particular, the surface export ratio varies 8‐fold across latitudes, reaching highest values in the iron‐limited sub‐Antarctic Southern Ocean. This depletes Cd relative to in the low‐latitude thermocline while adding excess Cd to deep waters by the regeneration of Cd‐enriched particles. Also, Cd tends to regenerate slightly deeper than in the subsurface ocean, and the regeneration ratio reaches a maximum at 700–1,500 m. These contrasts are responsible for a slight concavity in the relationship and should be considered when interpreting paleoceanographic Cd records.