Abstract Because internal alkenes are more challenging synthetic targets than terminal alkenes, metal‐catalyzed olefin mono‐transposition (i.e., positional isomerization) approaches have emerged to afford valuableE‐ orZ‐internal alkenes from their complementary terminal alkene feedstocks. However, the applicability of these methods has been hampered by lack of generality, commercial availability of precatalysts, and scalability. Here, we report a nickel‐catalyzed platform for the stereodivergentE/Z‐selective synthesis of internal alkenes at room temperature. Commercial reagents enable this one‐carbon transposition of terminal alkenes to valuableE‐ orZ‐internal alkenes via a Ni−H‐mediated insertion/elimination mechanism. Though the mechanistic regime is the same in both systems, the underlying pathways that lead to each of the active catalysts are distinct, with theZ‐selective catalyst forming from comproportionation of an oxidative addition complex followed by oxidative addition with substrate and theE‐selective catalyst forming from protonation of the metal by the trialkylphosphonium salt additive. In each case, ligand sterics and denticity control stereochemistry and prevent over‐isomerization.
more »
« less
Experimental and Theoretical Investigation of Alkene Transformations in Oceanic Hydrothermal Fluids: A Mechanistic Study of Styrene
Abstract Natural organic matter plays an important role in oceanic hydrothermal systems through a combination of geological and chemical processes. However, identifying the hydrothermal pathways of organic compounds is still quite limited, preventing us from understanding how organic matter is transformed in hydrothermal systems. In this study, we focus on the reaction pathways of alkenes, which represent a key functional group intermediate linking the most abundant hydrocarbons in seafloor hydrothermal environments. Three major pathways are observed for alkenes under mild hydrothermal conditions, including hydration, oxidation, and dimerization. The pathway distributions of alkenes can be affected by the presence of dissolved metal salts; hydration of alkenes is driven by metal ions via the change of solution pH, while alkene dimerization is controlled by pH and the type of metal cations and complexes. Overall, this study identifies alkene hydrothermal pathways and highlights the important roles of metal salts in controlling hydrothermal transformations.
more »
« less
- Award ID(s):
- 2042213
- PAR ID:
- 10444622
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 16
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Synthesis of complex organic molecules has relied heavily on the use of stoichiometric organometallic reagents. Strategies such as metal-catalyzed cycloisomerization bypass the need for these oftentimes harsh reagents and are valuable for constructing cyclic frameworks from simple unsaturated carbon sources. An important extension of this cyclization methodology is the incorporation of additional components accompanying the initial annulation. Through our studies we learned that cationic cobalt complexes can catalyze an intramolecular enyne cyclization, and subsequently form carbon-carbon bonds through intermolecular incorporation of feedstock alkenes into a presumed metallacycle intermediate. This strategy allows access to complex alicyclic and heterocyclic compounds from an earth abundant metal catalyst and readily available materials. Of note, is the complimentary reactivity and selectivity in this newly discovered cationic cobalt reaction manifold as compared to analogous rhodium and ruthenium catalysis. We discovered that product selectivity is dependent upon alkene identity, with activated alkenes and unactivated alkenes inserting into opposite sides of the cobaltacyclopentene intermediate. This remarkable selectivity provides access to two different motifs accompanying the cycle formed, either a linear diene or a styrene with a pendant functionalized acrylate. Over 25 different medicinally relevant pyrrolidines were accessed in this fashion and further elaborated on by post-synthetic modifications. In addition, the enantioselective variant of this reaction is also explored with selectivities up to 77% ee.more » « less
-
Abstract Mechanochemical synthesis has emerged as a facile method for the preparation of a wide range of organic, inorganic, and polymeric materials. Here, we report the use of mechanochemical synthesis for the preparation of ionically bonded organic metal halide hybrids with a zero‐dimensional (0D) structure at the molecular level. (Ph4P)2SbCl5and (Ph4P)2MnCl4were synthesized by grinding appropriate ratios of organic halide salt Ph4PCl with inorganic metal halide salts SbCl3and MnCl2, respectively. The structural and photophysical properties of mechanochemically synthesized (Ph4P)2SbCl5and (Ph4P)2MnCl4were characterized, which are almost identical to those of single crystals prepared by slow solution growth. By reacting Ph4PCl with both SbCl3and MnCl2, we have been able to produce a mixture of two 0D organic metal halide hybrids that exhibit a dual emission covering a wide range of the spectrum with Commission Internationale de l'Eclairage (CIE) coordinates of (0.4898, 0.4800). Our work has clearly established mechanochemical synthesis as an effective method to produce ionically bonded organic‐inorganic hybrids.more » « less
-
Abstract 2 + 2 Photocycloadditions are idealized, convergent construction approaches of 4-membered heterocyclic rings, including azetidines. However, methods of direct excitation are limited by the unfavorable photophysical properties of imines and electronically unbiased alkenes. Here, we report copper-catalyzed photocycloadditions of non-conjugated imines and alkenes to produce a variety of substituted azetidines. Design principles allow this base metal-catalyzed method to achieve 2 + 2 imine-olefin photocycloaddition via selective alkene activation through a coordination-MLCT pathway supported by combined experimental and computational mechanistic studies.more » « less
-
Abstract The catalytic one‐bond isomerization (transposition) of 1‐alkenes is an emerging approach toZ‐2‐alkenes. Design of more selective catalysts would benefit from a mechanistic understanding of factors controllingZselectivity. We propose here a reaction pathway forcis‐Mo(CO)4(PCy3)(piperidine) (3), a precatalyst that shows highZselectivity for transposition of alpha olefins (e. g., 1‐octene to 2‐octene, 18 : 1Z : Eat 74 % conversion). Computational modeling of reaction pathways and isotopic labeling suggests the isomerization takes place via an allyl (1,3‐hydride shift) pathway, where oxidative addition offac‐(CO)3Mo(PCy3)(η2‐alkene) is followed by hydride migration from one position (cisto allyl C3carbon) to another (cisto allyl C1carbon) via hydride/CO exchanges. Calculated barriers for the hydride migration pathway are lower than explored alternative mechanisms (e. g., change of allyl hapticity, allyl rotation). To our knowledge, this is the first study to propose such a hydride migration in alkene isomerization.more » « less
An official website of the United States government
