Observations of core-collapse supernovae (CCSNe) reveal a wealth of information about the dynamics of the supernova ejecta and its composition but very little direct information about the progenitor. Constraining properties of the progenitor and the explosion requires coupling the observations with a theoretical model of the explosion. Here we begin with the CCSN simulations of Couch et al., which use a nonparametric treatment of the neutrino transport while also accounting for turbulence and convection. In this work we use the SuperNova Explosion Code to evolve the CCSN hydrodynamics to later times and compute bolometric light curves. Focusing on Type IIP SNe (SNe IIP), we then (1) directly compare the theoretical STIR explosions to observations and (2) assess how properties of the progenitor’s core can be estimated from optical photometry in the plateau phase alone. First, the distribution of plateau luminosities (
Type Ia supernova explosions (SN Ia) are fundamental sources of elements for the chemical evolution of galaxies. They efficiently produce intermediate-mass (with
- Award ID(s):
- 1927130
- NSF-PAR ID:
- 10444674
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 268
- Issue:
- 1
- ISSN:
- 0067-0049
- Format(s):
- Medium: X Size: Article No. 8
- Size(s):
- Article No. 8
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract L 50) and ejecta velocities achieved by our simulations is similar to the observed distributions. Second, we fit our models to the light curves and velocity evolution of some well-observed SNe. Third, we recover well-known correlations, as well as the difficulty of connecting any one SN property to zero-age main-sequence mass. Finally, we show that there is a usable, linear correlation between iron core mass andL 50such that optical photometry alone of SNe IIP can give us insights into the cores of massive stars. Illustrating this by application to a few SNe, we find iron core masses of 1.3–1.5M ⊙with typical errors of 0.05M ⊙. Data are publicly available online on Zenodo: doi:10.5281/zenodo.6631964 . -
Abstract We present photometric and spectroscopic data for SN 2022joj, a nearby peculiar Type Ia supernova (SN Ia) with a fast decline rate (Δ
m 15,B= 1.4 mag). SN 2022joj shows exceedingly red colors, with a value of approximatelyB −V ≈ 1.1 mag during its initial stages, beginning from 11 days before maximum brightness. As it evolves, the flux shifts toward the blue end of the spectrum, approachingB −V ≈ 0 mag around maximum light. Furthermore, at maximum light and beyond, the photometry is consistent with that of typical SNe Ia. This unusual behavior extends to its spectral characteristics, which initially displayed a red spectrum and later evolved to exhibit greater consistency with typical SNe Ia. Spectroscopically, we find strong agreement between SN 2022joj and double detonation models with white dwarf masses of around 1M ⊙and a thin He shell between 0.01 and 0.05M ⊙. Moreover, the early red colors are explained by line-blanketing absorption from iron peak elements created by the double detonation scenario in similar mass ranges. The nebular spectra in SN 2022joj deviate from expectations for double detonation, as we observe strong [Feiii ] emission instead of [Caii ] lines as anticipated, though this is not as robust a prediction as early red colors and spectra. The fact that as He shells get thinner these SNe start to look more like normal SNe Ia raises the possibility that this is the triggering mechanism for the majority of SNe Ia, though evidence would be missed if the SNe are not observed early enough. -
Abstract We present
griz photometric light curves for the full 5 yr of the Dark Energy Survey Supernova (DES-SN) program, obtained with both forced point-spread function photometry on difference images (DiffImg ) performed during survey operations, and scene modelling photometry (SMP) on search images processed after the survey. This release contains 31,636DiffImg and 19,706 high-quality SMP light curves, the latter of which contain 1635 photometrically classified SNe that pass cosmology quality cuts. This sample spans the largest redshift (z ) range ever covered by a single SN survey (0.1 <z < 1.13) and is the largest single sample from a single instrument of SNe ever used for cosmological constraints. We describe in detail the improvements made to obtain the final DES-SN photometry and provide a comparison to what was used in the 3 yr DES-SN spectroscopically confirmed Type Ia SN sample. We also include a comparative analysis of the performance of the SMP photometry with respect to the real-timeDiffImg forced photometry and find that SMP photometry is more precise, more accurate, and less sensitive to the host-galaxy surface brightness anomaly. The public release of the light curves and ancillary data can be found atgithub.com/des-science/DES-SN5YR and doi:10.5281/zenodo.12720777 . -
Abstract We present a new grid of cloudy atmosphere and evolution models for substellar objects. These models include the effect of refractory cloud species, including silicate clouds, on the spectra and evolution. We include effective temperatures from 900 to 2400 K and surface gravities from log
g = 3.5 to 5.5, appropriate for a broad range of objects with masses between 1 and 84M J. Model pressure–temperature structures are calculated assuming radiative–convective and chemical equilibrium. We consider the effect of both clouds and metallicity on the atmospheric structure, resulting spectra, and thermal evolution of substellar worlds. We parameterize clouds using the A. S. Ackerman & M. S. Marley cloud model, including cloud parameterf sedvalues from 1 to 8; we include three metallicities (−0.5, 0.0, and +0.5). Refractory clouds and metallicity both alter the evolution of substellar objects, changing the inferred temperature at a given age by up to 100–200 K. For solar-metallicity evolution models including clouds in warm objects, we find a hydrogen-burning minimum mass of 70.2M J, close to empirical measurements; we find a deuterium-burning minimum mass of 12.05M J(50% of initial D burned). We compare to the observed photometry of brown dwarfs, finding broad agreement with the measured photometry. We publish the spectra, evolution, and other data products online with open access on Zenodo (doi:10.5281/zenodo.12735103 ). -
Abstract The dimmest and most numerous outlier of the Type Ia supernova population, the Type Iax event, is increasingly being found in the results of observational campaigns. There is currently no single accepted model to describe these events. This 2D study explores the viability of modeling Type Iax events as a hybrid C/O/Ne white dwarf progenitor undergoing a deflagration using the multiphysics software FLASH. This hybrid was created using the stellar evolution code MESA, and its C-depleted core and mixed structure have demonstrated lower yields than traditional C/O progenitors in previous deflagration-to-detonation studies. To generate a sample, 30 “realizations” of this simulation were performed, the only difference being the shape of the initial match head used to start the deflagration. Consistent with earlier work, these realizations produce the familiar hot dense bound remnant surrounded by sparse ejecta. Our results indicate that the majority of the star remains unburned (∼70%) and bound (>90%). Our realizations produce total ejecta yields on the order of 10−2–10−1
M ☉, ejected56Ni yields on the order of 10−4–10−2M ☉, and ejecta kinetic energies on the order of 1048–1049erg. Compared to yields inferred from recent observations of the dimmest Type Iax events—SN 2007qd, SN 2008ha, SN 2010ae, SN 2019gsc, SN 2019muj, SN 2020kyg, and SN 2021fcg—our simulation produces comparable56Ni yields but too-small total yields and kinetic energies. Reignition of the remnant is also seen in some realizations.