skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Laser-induced dynamic alignment of the HD molecule without the Born–Oppenheimer approximation
Laser-induced molecular alignment is well understood within the framework of the Born–Oppenheimer (BO) approximation. Without the BO approximation, however, the concept of molecular structure is lost, making it hard to precisely define alignment. In this work, we demonstrate the emergence of alignment from the first-ever non-BO quantum dynamics simulations, using the HD molecule exposed to ultrashort laser pulses as a few-body test case. We extract the degree of alignment from the non-BO wave function by means of an operator expressed in terms of pseudo-proton coordinates that mimics the BO-based definition of alignment. The only essential approximation, in addition to the semiclassical electric-dipole approximation for the matter–field interaction, is the choice of time-independent explicitly correlated Gaussian basis functions. We use a variational, electric-field-dependent basis-set construction procedure, which allows us to keep the basis-set dimension low while capturing the main effects of electric polarization on the nuclear and electronic degrees of freedom. The basis-set construction procedure is validated by comparing with virtually exact grid-based simulations for two one-dimensional model systems: laser-driven electron dynamics in a soft attractive Coulomb potential and nuclear rovibrational dynamics in a Morse potential.  more » « less
Award ID(s):
1856702
PAR ID:
10444832
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
14
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Within the nuclear-electronic orbital (NEO) framework, the real-time NEO time-dependent density functional theory (RT-NEO-TDDFT) approach enables the simulation of coupled electronic-nuclear dynamics. In this approach, the electrons and quantum nuclei are propagated in time on the same footing. A relatively small time step is required to propagate the much faster electronic dynamics, thereby prohibiting the simulation of long-time nuclear quantum dynamics. Herein, the electronic Born–Oppenheimer (BO) approximation within the NEO framework is presented. In this approach, the electronic density is quenched to the ground state at each time step, and the real-time nuclear quantum dynamics is propagated on an instantaneous electronic ground state defined by both the classical nuclear geometry and the nonequilibrium quantum nuclear density. Because the electronic dynamics is no longer propagated, this approximation enables the use of an order-of-magnitude larger time step, thus greatly reducing the computational cost. Moreover, invoking the electronic BO approximation also fixes the unphysical asymmetric Rabi splitting observed in previous semiclassical RT-NEO-TDDFT simulations of vibrational polaritons even for small Rabi splitting, instead yielding a stable, symmetric Rabi splitting. For the intramolecular proton transfer in malonaldehyde, both RT-NEO-Ehrenfest dynamics and its BO counterpart can describe proton delocalization during the real-time nuclear quantum dynamics. Thus, the BO RT-NEO approach provides the foundation for a wide range of chemical and biological applications. 
    more » « less
  2. We derive a rigorous nuclear gradient for a molecule-cavity hybrid system using the quantum electrodynamics Hamiltonian. We treat the electronic–photonic degrees of freedom (DOFs) as the quantum subsystem and the nuclei as the classical subsystem. Using the adiabatic basis for the electronic DOF and the Fock basis for the photonic DOF and requiring the total energy conservation of this mixed quantum–classical (MQC) system, we derived the rigorous nuclear gradient for the molecule–cavity hybrid system, which is naturally connected to the approximate gradient under the Jaynes–Cummings approximation. The nuclear gradient expression can be readily used in any MQC simulations and will allow one to perform the non-adiabatic on-the-fly simulation of polariton quantum dynamics. The theoretical developments in this work could significantly benefit the polariton quantum dynamics community with a rigorous nuclear gradient of the molecule–cavity hybrid system and have a broad impact on the future non-adiabatic simulations of polariton quantum dynamics. 
    more » « less
  3. This study explores the impact of electric field and temperature on flash sintering of zirconia nanoparticles using molecular dynamics simulations. The findings suggest that the electric field effect is secondary to the temperature effect. A comparison of simulations varying temperature and electric field reveals a more significant difference in diffusion coefficient with temperature variations. Furthermore, the electric field effect does not exhibit a consistent monotonic trend, as seen in the changing order of curves when temperature increases. The induced electric field contributes to crystal orientation alignment and promotes surface mechanisms throughout sintering stages. While a higher electric field leads to greater atomic motion in the initial stage, the relationship is not strictly monotonic. However, it consistently enhances the diffusion coefficient of surface atoms, highlighting its role in surface mechanisms. Further research is warranted to fully understand the interplay between electric field, temperature, and sintering mechanisms. 
    more » « less
  4. Dielectric elastomer actuators (DEAs) are soft, electrically powered actuators that have no discrete moving parts, yet can exhibit large strains (10%–50%) and moderate stress (∼100 kPa). This Tutorial describes the physical basis underlying the operation of DEA's, starting with a simple linear analysis, followed by nonlinear Newtonian and energy approaches necessary to describe large strain characteristics of actuators. These lead to theoretical limits on actuation strains and useful non-dimensional parameters, such as the normalized electric breakdown field. The analyses guide the selection of elastomer materials and compliant electrodes for DEAs. As DEAs operate at high electric fields, this Tutorial describes some of the factors affecting the Weibull distribution of dielectric breakdown, geometrical effects, distinguishing between permanent and “soft” breakdown, as well as “self-clearing” and its relation to proof testing to increase device reliability. New evidence for molecular alignment under an electric field is also presented. In the discussion of compliant electrodes, the rationale for carbon nanotube (CNT) electrodes is presented based on their compliance and ability to maintain their percolative conductivity even when stretched. A procedure for making complaint CNT electrodes is included for those who wish to fabricate their own. Percolative electrodes inevitably give rise to only partial surface coverage and the consequences on actuator performance are introduced. Developments in actuator geometry, including recent 3D printing, are described. The physical basis of versatile and reconfigurable shape-changing actuators, together with their analysis, is presented and illustrated with examples. Finally, prospects for achieving even higher performance DEAs will be discussed. 
    more » « less
  5. We compare a variety of models used for the calculation of transport coefficients in dense plasmas, including average-atom models, models based on kinetic theory, structure matching effective potentials, and pair-potential molecular dynamics. In particular, we focus on the parameter space investigated in the second charged-particle transport coefficient code comparison workshop [Stanek et al., Phys. Plasmas 31, 052104 (2024)]. Each model is based on the self-consistent output of our average-atom calculations. Ionic transport properties are generated from implicit electron pair matched molecular dynamics simulations, bypassing the need for either dynamical electron simulations or on-the-fly electronic structure calculations. These matched pair potentials are generated in a nonlinear way using a classical mapping procedure, further avoiding an expensive force-matching procedure. We compare these results with the density functional theory data presented at the workshop, as well as a set of widely used parametric models, which we have modified to enhance accuracy, especially at the low- and high-temperature extremes of the parameter space. We also detail the non-trivial statistical aspect of converging ionic transport coefficients. 
    more » « less