Abstract Astrometry, the precise measurement of star motions, offers an alternative avenue to investigate low-frequency gravitational waves through the spatial deflection of photons, complementing pulsar timing arrays reliant on timing residuals. Upcoming data from Gaia, Theia, and Roman can not only cross-check pulsar timing array findings but also explore the uncharted frequency range bridging pulsar timing arrays and LISA. We present an analytical framework to evaluate the feasibility of detecting a gravitational wave background, considering measurement noise and the intrinsic variability of the stochastic background. Furthermore, we highlight astrometry's crucial role in uncovering key properties of the gravitational wave background, such as spectral index and chirality, employing information-matrix analysis. Finally, we simulate the emergence of quadrupolar correlations, commonly referred to as the generalized Hellings-Downs curves.
more »
« less
Exploring the early Universe with Gaia and Theia
Abstract It has recently been pointed out that Gaia is capable of detecting a stochastic gravitational wave background in the sensitivity band between the frequency of pulsar timing arrays and LISA. We argue that Gaia and Theia have great potential for early universe cosmology, since such a frequency range is ideal for probing phase transitions in asymmetric dark matter, SIMP and the cosmological QCD transition. Furthermore, there is the potential for detecting primordial black holes in the solar mass range produced during such an early universe transition and distinguish them from those expected from the QCD epoch. Finally, we discuss the potential for Gaia and Theia to probe topological defects and the ability of Gaia to potentially shed light on the recent NANOGrav results.
more »
« less
- Award ID(s):
- 1915314
- PAR ID:
- 10444943
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2021
- Issue:
- 12
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 023
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A bstract We explore the cosmological consequences of the superconductivity of QCD axion strings. Axion strings can support a sizeable chiral electric current and charge density, which alters their early universe dynamics. We examine the possibility that shrinking axion string loops can become effectively stable remnants called vortons, supported by the repulsive electromagnetic force of the string current. We find that vortons in our scenario are generically unstable, and so do not pose a cosmological difficulty. Furthermore, if a primordial magnetic field (PMF) exists in the early universe, a large current is induced on axion strings, creating a significant drag force from interactions with the surrounding plasma. As a result, the strings are slowed down, which leads to an orders of magnitude enhancement in the number of strings per Hubble volume. Finally, we study potential implications for the QCD axion relic abundance. The QCD axion window is shifted by orders of magnitude in some parts of our parameter space.more » « less
-
A<sc>bstract</sc> It is difficult to construct a post-inflation QCD axion model that solves the axion quality problem (and hence the Strong CP problem) without introducing a cosmological disaster. In a post-inflation axion model, the axion field value is randomized during the Peccei-Quinn phase transition, and axion domain walls form at the QCD phase transition. We emphasize that the gauge equivalence of all minima of the axion potential (i.e., domain wall number equals one) is insufficient to solve the cosmological domain wall problem. The axion string on which a domain wall ends must exist as an individual object (as opposed to a multi-string state), and it must be produced in the early universe. These conditions are often not satisfied in concrete models. Post-inflation axion models also face a potential problem from fractionally charged relics; solving this problem often leads to low-energy Landau poles for Standard Model gauge couplings, reintroducing the quality problem. We study several examples, finding that models that solve the quality problem face cosmological problems, and vice versa. This is not a no-go theorem; nonetheless, we argue that it is much more difficult than generally appreciated to find a viable post-inflation QCD axion model. Successful examples may have a nonstandard cosmological history (e.g., multiple types of cosmic axion strings of different tensions), undermining the widespread expectation that the post-inflation QCD axion scenario predicts a unique mass for axion dark matter.more » « less
-
We study the prospects for probing the Nnaturalness solution to the electroweak hierarchy problem with future gravitational wave observatories. Nnaturalness, in its simplest incarnation, predictsNcopies of the Standard Model with varying Higgs mass parameters. We show that in certain parameter regions the scalar reheaton transfers a substantial energy density to the sector with the smallest positive Higgs squared mass while remaining consistent with bounds on additional effective relativistic species. In this sector, all six quarks are much lighter than the corresponding QCD confinement scale, allowing for the possibility of a first-order chiral symmetry-breaking phase transition and an associated stochastic gravitational wave signal. We consider several scenarios characterizing the strongly-coupled phase transition dynamics and estimate the gravitational wave spectrum for each. Pulsar timing arrays (SKA), spaced-based interferometers (BBO, Ultimate-DECIGO,μAres, asteroid ranging), and astrometric measurements (THEIA) all have the potential to explore new regions of Nnaturalness parameter space, complementing probes from next generation cosmic microwave background radiation experiments.more » « less
-
Abstract Recently Gagné et al. suggested that young moving groups with similar kinematic properties could be part of larger dissolving structures. One example was IC 2602 as the core of a group of associations, including its corona (CIC 2602), Tucana-Horologium (THA), and parts of Theia 92. We explore this hypothesis by measuring the rotation periods of 953 objects selected using Gaia DR3 kinematics from IC 2602, CIC 2602, Theia 92, and a newly identified group of stars that bridge IC 2602 and THA. We use Transiting Exoplanet Survey Satellite (TESS) full frame images to measure new rotation periods and combine these with the rotation periods for THA from Popinchalk et al. to compare their rotation period distributions and other youth indicators where available to examine if the groups could be coeval. We find strong agreement between the rotation distributions of IC 2602, CIC 2602, and THA, suggesting a shared age of ∼40 Myr, and which in combination could serve as an example of a typical distribution at this age. Theia 92 does not agree at the same level, and we explore the potential kinematic reasons it does not match the rotation period distribution of the larger groups. Additionally, in our light curve analysis we identify ∼50 potential binaries, as well as four new M dwarf complex rotators that show major morphological changes between TESS cycles. Finally, using the amplitudes of the rotation periods we measured, we find strong agreement with the amplitude–age relation presented in Morris for our 40 Myr groups.more » « less
An official website of the United States government

