skip to main content

Title: Population demographic history and evolutionary rescue: Influence of a bottleneck event

Rapid environmental change presents a significant challenge to the persistence of natural populations. Rapid adaptation that increases population growth, enabling populations that declined following severe environmental change to grow and avoid extinction, is called evolutionary rescue. Numerous studies have shown that evolutionary rescue can indeed prevent extinction. Here, we extend those results by considering the demographic history of populations. To evaluate how demographic history influences evolutionary rescue, we created 80 populations of red flour beetle,Tribolium castaneum, with three classes of demographic history: diverse populations that did not experience a bottleneck, and populations that experienced either an intermediate or a strong bottleneck. We subjected these populations to a new and challenging environment for six discrete generations and tracked extinction and population size. Populations that did not experience a bottleneck in their demographic history avoided extinction entirely, while more than 20% of populations that experienced an intermediate or strong bottleneck went extinct. Similarly, among the extant populations at the end of the experiment, adaptation increased the growth rate in the novel environment the most for populations that had not experienced a bottleneck in their history. Taken together, these results highlight the importance of considering the demographic history of populations to make useful and effective conservation decisions and management strategies for populations experiencing environmental change that pushes them toward extinction.

more » « less
Award ID(s):
1930650 1930222
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Evolutionary Applications
Medium: X Size: p. 1483-1495
["p. 1483-1495"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Following severe environmental change that reduces mean population fitness below replacement, populations must adapt to avoid eventual extinction, a process called evolutionary rescue. Models of evolutionary rescue demonstrate that initial size, genetic variation and degree of maladaptation influence population fates. However, many models feature populations that grow without negative density dependence or with constant genetic diversity despite precipitous population decline, assumptions likely to be violated in conservation settings. We examined the simultaneous influences of density-dependent growth and erosion of genetic diversity on populations adapting to novel environmental change using stochastic, individual-based simulations. Density dependence decreased the probability of rescue and increased the probability of extinction, especially in large and initially well-adapted populations that previously have been predicted to be at low risk. Increased extinction occurred shortly following environmental change, as populations under density dependence experienced more rapid decline and reached smaller sizes. Populations that experienced evolutionary rescue lost genetic diversity through drift and adaptation, particularly under density dependence. Populations that declined to extinction entered an extinction vortex, where small size increased drift, loss of genetic diversity and the fixation of maladaptive alleles, hindered adaptation and kept populations at small densities where they were vulnerable to extinction via demographic stochasticity.

    more » « less
  2. Abstract

    In today’s rapidly changing world, it is critical to examine how animal populations will respond to severe environmental change. Following events such as pollution or deforestation that cause populations to decline, extinction will occur unless populations can adapt in response to natural selection, a process called evolutionary rescue. Theory predicts that immigration can delay extinction and provide novel genetic material that can prevent inbreeding depression and facilitate adaptation. However, when potential source populations have not experienced the new environment before (i.e., are naive), immigration can counteract selection and constrain adaptation. This study evaluated the effects of immigration of naive individuals on evolutionary rescue using the red flour beetle, Tribolium castaneum, as a model system. Small populations were exposed to a challenging environment, and 3 immigration rates (0, 1, or 5 migrants per generation) were implemented with migrants from a benign environment. Following an initial decline in population size across all treatments, populations receiving no immigration gained a higher growth rate one generation earlier than those with immigration, illustrating the constraining effects of immigration on adaptation. After 7 generations, a reciprocal transplant experiment found evidence for adaptation regardless of immigration rate. Thus, while the immigration of naive individuals briefly delayed adaptation, it did not increase extinction risk or prevent adaptation following environmental change.

    more » « less
  3. Abstract

    When a population experiences severe stress from a changing environment, evolution by natural selection can prevent its extinction, a process dubbed “evolutionary rescue.” However, evolution may be unable to track the sort ofrapidenvironmental change being experienced by many modern‐day populations. A potential solution is for organisms to respond to environmental change through phenotypic plasticity, which can buffer populations against change and thereby buy time for evolutionary rescue. In this review, we examine whether this process extends to situations in which the environmentally induced response is passed to offspring. As we describe, theoretical and empirical studies suggest that such “transgenerational plasticity” can increase population persistence. We discuss the implications of this process for conservation biology, outline potential limitations, and describe some applications. Generally, transgenerational plasticity may be effective at buying time for evolutionary rescue to occur.

    more » « less
  4. Abstract

    Rescue effects arise when ecological and evolutionary processes restore positive intrinsic growth rates in populations that are at risk of going extinct. Rescue effects have traditionally focused on the roles of immigration, phenotypic plasticity, gene flow, and adaptation. However, species interactions are also critical for understanding how populations respond to environmental change.

    In particular, the fitness of plant and animal hosts is strongly influenced by symbiotic associations with the bacteria, archaea, microeukaryotes and viruses that collectively make up a host's microbiome. While some are pathogenic, many microorganisms confer nutritional, immunological, and developmental benefits that can protect hosts against the effects of rapid environmental change.

    Microbial rescue occurs when changes in microbiome abundance, composition, or activity influence host physiology or behaviour in ways that improve host fitness. If these microbial attributes and their beneficial effects are transmitted through a population, it may stabilize growth rates and reduce the probability of extinction.

    In addition to providing a framework to guide theoretical and empirical efforts in host‐microbiome research, the principles of microbial rescue may also be useful for adaptively managing at‐risk species. We discuss the risks and rewards of incorporating microbial rescue into conservation strategies such as probiotics, assisted migration, and captive breeding.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

    more » « less
  5. Abstract

    Despite extensive research on agricultural pests, our knowledge about their evolutionary history is often limited. A mechanistic understanding of the demographic changes and modes of adaptation remains an important goal, as it improves our understanding of organismal responses to environmental change and our ability to sustainably manage pest populations. Emerging genomic datasets now allow for characterization of demographic and adaptive processes, but face limits when they are drawn from contemporary samples, especially in the context of strong demographic change, repeated selection, or adaptation involving modest shifts in allele frequency at many loci. Temporal sampling, however, can improve our ability to reconstruct evolutionary events. Here, we leverage museum samples to examine whether population genomic diversity and structure has changed over time, and to identify genomic regions that appear to be under selection. We focus on the Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say 1824; Coleoptera: Chrysomelidae), which is widely regarded as a super-pest due to its rapid, and repeated, evolution to insecticides. By combining whole genome resequencing data from 78 museum samples with modern sampling, we demonstrate that CPB expanded rapidly in the 19th century, leading to a reduction in diversity and limited genetic structure from the Midwest to Northeast United States. Temporal genome scans provide extensive evidence for selection acting in resistant field populations in Wisconsin and New York, including numerous known insecticide resistance genes. We also validate these results by showing that known selective sweeps in modern populations are identified by our genome scan. Perhaps most importantly, temporal analysis indicates selection on standing genetic variation, as we find evidence for parallel evolution in the two geographical regions. Parallel evolution involves a range of phenotypic traits not previously identified as under selection in CPB, such as reproductive and morphological functional pathways that might be important for adaptation to agricultural habitats.

    more » « less