skip to main content


Title: Nanoscale Activation Energy Mapping and Leveraging for Accelerating Ferroelectric Domain Nucleation and Growth
Abstract

The dynamics of ferroelectric domain switching are directly mapped in a PbZr0.2Ti0.8O3thin film using piezoresponse force microscopy. Employing the rastering tip as a poling electrode to locally apply a fixed bias near the coercive field, while simultaneously monitoring the evolving domain pattern during continuous imaging, the effectively independent switching dynamics for numerous domains are directly investigated. While areal poling follows the anticipated S‐curve, this is shown to be the collective outcome of linear terminal radial growth for an ensemble of independently nucleating domains. By repeating such spatially resolved measurements in the same region, but with progressively greater fields, nucleation sites and growth patterns are shown to clearly repeat. This reveals apparent defects which comparatively promote switching, and nucleation times and growth rates that accelerate exponentially. After analyzing and mapping the ratio of activation energies for nucleation to growth, a high density of nucleation sites can possibly be activated with higher poling fields—even if only at the start of a poling process—enabling faster and more efficient switching to be engineered as directly demonstrated.

 
more » « less
NSF-PAR ID:
10445045
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
8
Issue:
6
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    One of the general features of ferroelectric systems is a complex nature of polarization reversal, which involves domain nucleation and motion of domain walls. Here, time‐resolved nanoscale domain imaging is applied in conjunction with the integral switching current measurements to investigate the mechanism of polarization reversal in yttrium‐doped HfO2(Y:HfO2)—currently one of the most actively studied ferroelectric systems. More specifically, the effect of film microstructure on the nucleation process is investigated by performing a comparative study of the polarization switching behavior in the epitaxial and polycrystalline Y:HfO2thin film capacitors. It is found that although the epitaxial Y:HfO2capacitors tend to switch slower than their polycrystalline counterparts, they exhibit a significantly higher nucleation density and rate, suggesting that this is a rate‐limiting mechanism. In addition, it is observed that under the external fields approaching the activation field value, the switching kinetics can be described equally well by the nucleation limited switching and the Kolmogorov‐Avrami‐Ishibashi models for both types of capacitors. This signifies convergence of two different mechanisms implying that the polarization reversal proceeds via a homogeneous nucleation process unaffected by the film microstructure, which can be considered as approaching the intrinsic switching limit.

     
    more » « less
  2. Abstract

    Ferroelectric domain walls, topological entities separating domains of uniform polarization, are promising candidates as active elements for nanoscale memories. In such applications, controlled nucleation and stabilization of domain walls are critical. Here, using in situ transmission electron microscopy and phase‐field simulations, a controlled nucleation of vertically oriented 109° domain walls in (110)‐oriented BiFeO3(BFO) thin films is reported. In the switching experiment, reversed domains that are nucleated preferentially at the nanoscale edges of the “crest and sag” pattern‐like electrode under external bias subsequently grow into a stable stripe configuration. In addition, when triangular pockets (with an in‐plane polarization component) are present, these domain walls are pinned to form stable flux‐closure domains. Phase field simulations show that i) field enhancement at the edges of the electrode causes site‐specific domain nucleation, and ii) the local electrostatics at the domain walls drives the formation of flux closure domains, thus stabilizing the striped pattern, irrespective of the initial configuration. The results demonstrate how flux closure pinning can be exploited in conjunction with electrode patterning and substrate orientation to achieve a desired topological defect configuration. These insights constitute critical advancements in exploiting domain walls in next generation ferroelectronic devices.

     
    more » « less
  3.  
    more » « less
  4. While electrical poling of organic ferroelectrics has been shown to improve device properties, there are challenges in visualizing accompanying structural changes. We observe poling induced changes in ferroelectric domains by applying differential phase contrast (DPC) imaging in the scanning transmission electron microscope, a method that has been used to observe spatial distributions of electromagnetic fields at the atomic scale. In this work, we obtain DPC images from unpoled and electrically poled polyvinylidene fluoride trifluorethylene films and compare their performance in polymer thin film transistors. The vertically poled films show uniform domains throughout the bulk compared to the unpoled film with a significantly higher magnitude of the overall polarization. Thin film transistors comprising a donor–acceptor copolymer as the active semiconductor layer show improved performance with the vertically poled ferroelectric dielectric film compared with the unpoled ferroelectric dielectric film. A poling field of 80–100 MV/m for the dielectric layer yields the best performing transistors; higher than 100 MV/m is seen to degrade the transistor performance. The results are consistent with a reduction in deleterious charge carrier scattering from ferroelectric domain boundaries or interfacial dipoles arising from electrical poling.

     
    more » « less
  5. Abstract

    Acting like thermal resistances, ferroelectric domain walls can be manipulated to realize dynamic modulation of thermal conductivity (k), which is essential for developing novel phononic circuits. Despite the interest, little attention has been paid to achieving room‐temperature thermal modulation in bulk materials due to challenges in obtaining a high thermal conductivity switching ratio (khigh/klow), particularly in commercially viable materials. Here, room‐temperature thermal modulation in 2.5 mm‐thick Pb(Mg1/3Nb2/3)O3xPbTiO3(PMN–xPT) single crystals is demonstrated. With the use of advanced poling conditions, assisted by the systematic study on composition and orientation dependence of PMN–xPT, a range of thermal conductivity switching ratios with a maximum of ≈1.27 is observed. Simultaneous measurements of piezoelectric coefficient (d33) to characterize the poling state, domain wall density using polarized light microscopy (PLM), and birefringence change using quantitative PLM reveal that compared to the unpoled state, the domain wall density at intermediate poling states (0<d33<d33,max) is lower due to the enlargement in domain size. At optimized poling conditions (d33,max), the domain sizes show increased inhomogeneity that leads to enhancement in the domain wall density. This work highlights the potential of commercially available PMN–xPT single crystals among other relaxor‐ferroelectrics for achieving temperature control in solid‐state devices.

     
    more » « less