skip to main content

Title: Hydrological Intensification Will Increase the Complexity of Water Resource Management

Global warming intensifies the hydrological cycle by altering the rate of water fluxes to and from the terrestrial surface, resulting in an increase in extreme precipitation events and longer dry spells. Prior hydrological intensification work has largely focused on precipitation without joint consideration of evaporative demand changes and how plants respond to these changes. Informed by state‐of‐the‐art climate models, we examine projected changes in hydrological intensification and its role in complicating water resources management using a framework that accounts for precipitation surplus and evaporative demand. Using a metric that combines the difference between daily precipitation and daily evaporative demand (surplus events) and consecutive days when evaporative demand exceeds precipitation (deficit time), we show that, globally, surplus events will become larger (+11.5% and +18.5% for moderate and high emission scenarios, respectively) and the duration between them longer (+5.1%; +9.6%) by the end of the century, with the largest changes in the northern latitudes. The intra‐annual occurrence of these extremes will stress existing water management infrastructure in major river basins, where over one third of years during 2070–2100 under a moderate emissions scenario will be hydrologically intense (large intra‐annual increases in surplus intensity and deficit time), tripling that of the historical baseline. Larger increases in hydrologically intense years are found in basins with large reservoir capacity (e.g., Amazon, Congo, and Danube River Basins), which have significant populations, irrigate considerable farmland, and support threatened and endangered aquatic species. Incorporating flexibility into water resource infrastructure and management will be paramount with continued hydrological intensification.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Complete transformations of land cover from prairie, wetlands, and hardwood forests to row crop agriculture and urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. In this study, we investigate four large (23 000–69 000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of precipitation and land use changes. Since 1935, flow, precipitation, artificial drainage extent, and corn and soybean acreage have increased across the region. In extensively drained basins, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Using a water budget, we determined that the storage term has decreased in intensively drained and cultivated basins by 30–200 % since 1975, but increased by roughly 30 % in the less agricultural basin. Storage has generally decreased during spring and summer months and increased during fall and winter months in all watersheds. Thus, the loss of storage and enhanced hydrologic connectivity and efficiency imparted by artificial agricultural drainage appear to have amplified the streamflow response to precipitation increases in the Midwest. Future increases in precipitation are likely to further intensify drainage practices and increase streamflows. Increased streamflow has implications for flood risk, channel adjustment, and sediment and nutrient transport and presents unique challenges for agriculture and water resource management in the Midwest. Better documentation of existing and future drain tile and ditch installation is needed to further understand the role of climate versus drainage across multiple spatial and temporal scales. 
    more » « less
  2. Abstract

    Rising global temperatures are expected to decrease the precipitation amount that falls as snow, causing greater risk of water scarcity, groundwater overdraft, and fire in areas that rely on mountain snowpack for their water supply. Streamflow in large river basins varies with the amount, timing, and type of precipitation, evapotranspiration, and drainage properties of watersheds; however, these controls vary in time and space making it difficult to identify the areas contributing most to flow and when. In this study, we separate the evaporative influences from source values of water isotopes from the Snake River basin in the western United States to relate source area to flow dynamics. We developed isoscapes (δ2H and δ18O) for the basin and found that isotopic composition of surface water in small watersheds is primarily controlled by longitude, latitude, and elevation. To examine temporal variability in source contributions to flow, we present a 6‐years record of Snake River water isotopes from King Hill, Idaho, after removing evaporative influences. During periods of low flow, source water values were isotopically lighter indicating a larger contribution to flow from surface waters in the highest elevation, eastern portion of the basin. River evaporation increases were evident during summer likely reflecting climate, changing water availability, and management strategies within the basin. Our findings present a potential tool for identifying critical portions of basins contributing to river flow as climate fluctuations alter flow dynamics. This tool can be applied in other continental‐interior basins where evaporation may obscure source water isotopic signatures.

    more » « less
  3. Abstract The phases of long-lasting (more than 10–15 years) increased and decreased water flow, water temperature and heat flux values in the Northern Dvina River and the Pechora River were studied for the observation period from the 1930s to 2020. To distinguish between different phases, statistical homogeneity tests and normalized cumulative deviation curves were used. Generally, the identified phases displayed statistically significant differences between average values of the measured characteristics. During contrasting phases, the general pattern of water temperature during the warm season, water runoff and heat flux in the Northern Dvina and Pechora River Basins differed considerably. The number of the identified phases varied between the studied rivers and ranged from two to four contrasting phases in the Northern Dvina River exceeded those of the Pechora River. Consequently, the duration of the phases also varied quite significantly. The difference in mean values of the hydrological characteristics during the contrasting phases in the Northern Dvina River exceeded those of the Pechora River. The longest phases of increased and decreased heat flux nearly coincide with contrasting periods of water runoff and water temperature. The phases of simultaneous increased or decreased values of all hydrological characteristics were associated with corresponding periods of increased or decreased air temperature (on average for a year and for the open water period) and annual precipitation values. Those long-lasting phases of simultaneously increased or decreased values of river flow, heat flux, and water temperature were associated with changes of the global thermal regime, regional cryosphere variations, and long-term periods of intensification or weakening of the atmospheric circulation over the North Atlantic, characterised by variability in macrocirculation indices such as the North Atlantic Oscillation and Scandinavian circulation pattern. 
    more » « less
  4. Abstract

    The land surface hydrology of the North American Great Lakes region regulates ecosystem water availability, lake levels, vegetation dynamics, and agricultural practices. In this study, we analyze the Great Lakes terrestrial water budget using the Noah‐MP land surface model to characterize the catchment hydrological regimes and identify the dominant quantities contributing to the variability in the land surface hydrology. We show that the Great Lakes domain is not hydrologically uniform and strong spatiotemporal differences exist in the regulators of the hydrological budget at daily, monthly, and annual timescales. Subseasonally, precipitation and soil moisture explain nearly all the terrestrial water budget variability in the southern basins, while the northern latitudes are snow‐dominated regimes. Seasonal assessments reveal greater differences among the basins. Precipitation, evaporation, and runoff are the dominant sources of variability at lower latitudes, while at higher latitudes, terrestrial water storage in the form of ground snowpack and soil moisture has the leading role. Differences in land cover categorizations, for example, croplands, forests, or urban zones, further induce spatial differences in the hydrological characteristics. This quantification of variability in the terrestrial water cycle embedded at different temporal scales is important to assess the impacts of changes in climate and land cover on catchment sensitivities across the diverse hydroclimate of the Great Lakes region.

    more » « less
  5. Abstract Key Message

    Wood fiber cell wall thickness best characterizes white bands found at the end of certain growth rings inSalix alba.Evidence suggests these features are related to late-season hydrology.


    Recent, record-breaking discharge in the Yenisei River, Siberia, is part of a larger trend of increasing river flow in the Arctic driven by Arctic Amplification. These changes in magnitude and timing of discharge can lead to increased risk of extreme flood events, with implications for infrastructure, ecosystems, and climate. To better understand the effect of these changes on riparian tree growth along the lower reaches of the Yenisei River, we collected white willow (Salix alba) cross sections from a fluvial fill flat terrace that occasionally floods when water levels are extremely high. These samples displayed bands of lighter colored wood at the end of certain annual growth rings that we hypothesized were related to flood events. To identify the characteristics and causes of these features, we use an approach known as quantitative wood anatomy (QWA) to measure variation in fiber cell dimensions across tree rings, particularly fiber lumen area (LA) and cell wall thickness (CWT). We investigate (1) which cell parameters and method to extract intra-annual data from annual tree rings best capture terminal white bands identified inSalix, and (2) if these patterns are related to flood magnitude and/or duration. We find that fiber CWT best captures terminal white bands found inSalixrings. Time series derived from CWT measurements correlate with July water-level durations, but at levels too low to be labeled flooding. Although both terminal white bands and July flooding have reduced since 1980, questions remain as to the cause of terminal white bands. Understanding how riparian vegetation responds to changes in hydrology can help us better manage riparian ecosystems and understand the impacts of a changing Arctic hydrological regime.

    more » « less