Abstract The land surface hydrology of the North American Great Lakes region regulates ecosystem water availability, lake levels, vegetation dynamics, and agricultural practices. In this study, we analyze the Great Lakes terrestrial water budget using the Noah‐MP land surface model to characterize the catchment hydrological regimes and identify the dominant quantities contributing to the variability in the land surface hydrology. We show that the Great Lakes domain is not hydrologically uniform and strong spatiotemporal differences exist in the regulators of the hydrological budget at daily, monthly, and annual timescales. Subseasonally, precipitation and soil moisture explain nearly all the terrestrial water budget variability in the southern basins, while the northern latitudes are snow‐dominated regimes. Seasonal assessments reveal greater differences among the basins. Precipitation, evaporation, and runoff are the dominant sources of variability at lower latitudes, while at higher latitudes, terrestrial water storage in the form of ground snowpack and soil moisture has the leading role. Differences in land cover categorizations, for example, croplands, forests, or urban zones, further induce spatial differences in the hydrological characteristics. This quantification of variability in the terrestrial water cycle embedded at different temporal scales is important to assess the impacts of changes in climate and land cover on catchment sensitivities across the diverse hydroclimate of the Great Lakes region. 
                        more » 
                        « less   
                    
                            
                            Hydrological Intensification Will Increase the Complexity of Water Resource Management
                        
                    
    
            Abstract Global warming intensifies the hydrological cycle by altering the rate of water fluxes to and from the terrestrial surface, resulting in an increase in extreme precipitation events and longer dry spells. Prior hydrological intensification work has largely focused on precipitation without joint consideration of evaporative demand changes and how plants respond to these changes. Informed by state‐of‐the‐art climate models, we examine projected changes in hydrological intensification and its role in complicating water resources management using a framework that accounts for precipitation surplus and evaporative demand. Using a metric that combines the difference between daily precipitation and daily evaporative demand (surplus events) and consecutive days when evaporative demand exceeds precipitation (deficit time), we show that, globally, surplus events will become larger (+11.5% and +18.5% for moderate and high emission scenarios, respectively) and the duration between them longer (+5.1%; +9.6%) by the end of the century, with the largest changes in the northern latitudes. The intra‐annual occurrence of these extremes will stress existing water management infrastructure in major river basins, where over one third of years during 2070–2100 under a moderate emissions scenario will be hydrologically intense (large intra‐annual increases in surplus intensity and deficit time), tripling that of the historical baseline. Larger increases in hydrologically intense years are found in basins with large reservoir capacity (e.g., Amazon, Congo, and Danube River Basins), which have significant populations, irrigate considerable farmland, and support threatened and endangered aquatic species. Incorporating flexibility into water resource infrastructure and management will be paramount with continued hydrological intensification. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1653452
- PAR ID:
- 10445055
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 10
- Issue:
- 3
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A better understanding of the relative roles of internal climate variability and external contributions, from both natural (solar, volcanic) and anthropogenic greenhouse gas forcing, is important to better project future hydrologic changes. Changes in the evaporative demand play a central role in this context, particularly in tropical areas characterized by high precipitation seasonality, such as the tropical savannah and semi-desertic biomes. Here we present a set of geochemical proxies in speleothems from a well-ventilated cave located in central-eastern Brazil which shows that the evaporative demand is no longer being met by precipitation, leading to a hydrological deficit. A marked change in the hydrologic balance in central-eastern Brazil, caused by a severe warming trend, can be identified, starting in the 1970s. Our findings show that the current aridity has no analog over the last 720 years. A detection and attribution study indicates that this trend is mostly driven by anthropogenic forcing and cannot be explained by natural factors alone. These results reinforce the premise of a severe long-term drought in the subtropics of eastern South America that will likely be further exacerbated in the future given its apparent connection to increased greenhouse gas emissions.more » « less
- 
            Abstract The phases of long-lasting (more than 10–15 years) increased and decreased water flow, water temperature and heat flux values in the Northern Dvina River and the Pechora River were studied for the observation period from the 1930s to 2020. To distinguish between different phases, statistical homogeneity tests and normalized cumulative deviation curves were used. Generally, the identified phases displayed statistically significant differences between average values of the measured characteristics. During contrasting phases, the general pattern of water temperature during the warm season, water runoff and heat flux in the Northern Dvina and Pechora River Basins differed considerably. The number of the identified phases varied between the studied rivers and ranged from two to four contrasting phases in the Northern Dvina River exceeded those of the Pechora River. Consequently, the duration of the phases also varied quite significantly. The difference in mean values of the hydrological characteristics during the contrasting phases in the Northern Dvina River exceeded those of the Pechora River. The longest phases of increased and decreased heat flux nearly coincide with contrasting periods of water runoff and water temperature. The phases of simultaneous increased or decreased values of all hydrological characteristics were associated with corresponding periods of increased or decreased air temperature (on average for a year and for the open water period) and annual precipitation values. Those long-lasting phases of simultaneously increased or decreased values of river flow, heat flux, and water temperature were associated with changes of the global thermal regime, regional cryosphere variations, and long-term periods of intensification or weakening of the atmospheric circulation over the North Atlantic, characterised by variability in macrocirculation indices such as the North Atlantic Oscillation and Scandinavian circulation pattern.more » « less
- 
            Kaplan, J (Ed.)The Mississippi River Basin (MRB), the fourth-largest river basin in the world, is an important corridor for hy- droelectric power generation, agricultural and industrial production, riverine transportation, and ecosystem goods and services. Historically, flooding of the Mississippi River has resulted in significant economic losses. In a future with an intensified global hydrological cycle, the altered discharge of the river may jeopardize commu- nities and infrastructure situated in the floodplain. This study utilizes output from the Community Earth System Model version 2 (CESM2) large ensemble simulations spanning 1930 to 2100 to quantify changes in future MRB discharge under a high greenhouse gas emissions scenario (SSP3–7.0). The simulations show that increasing precipitation trends exceed and dominate increased evapotranspiration (ET), driving an overall increase in total discharge in the Ohio and Lower Mississippi River basins. On a seasonal scale, reduced spring snowmelt is projected in the Ohio and Missouri River basins, leading to reduced spring runoff in those regions. However, decreased snowmelt and spring runoff is overshadowed by a larger increase in projected precipitation minus ET over the entire basin and leads to an increase in mean river discharge. This increase in discharge is linked to a relatively small increase in the magnitude of extreme floods (2 % and 3 % for 100-year and 1000-year floods, respectively) by the late 21st century relative to the late 20th century. Our analyses imply that under SSP3–7.0 forcing, the Mississippi River and Tributaries (MR&T) project design flood would not be exceeded at the 100-year return period. Our results harbor implications for water resources management including increased vulnerability of the Mississippi River given projected changes in climate.more » « less
- 
            Abstract Atmospheric nitrogen (N) deposition and climate change are transforming the way N moves through dryland watersheds. For example, N deposition is increasing N export to streams, which may be exacerbated by changes in the magnitude, timing, and intensity of precipitation (i.e., the precipitation regime). While deposition can control the amount of N entering a watershed, the precipitation regime influences rates of internal cycling; when and where soil N, plant roots, and microbes are hydrologically coupled via diffusion; how quickly plants and microbes assimilate N; and rates of denitrification, runoff, and leaching. We used the ecohydrological model RHESSys to investigate (a) how N dynamics differ between N‐limited and N‐saturated conditions in a dryland watershed, and (b) how total precipitation and its intra‐annual intermittency (i.e., the time between storms in a year), interannual intermittency (i.e., the duration of dry months across multiple years), and interannual variability (i.e., variance in the amount of precipitation among years) modify N dynamics and export. Streamflow nitrate (NO3−) export was more sensitive to increasing rainfall intermittency (both intra‐annual and interannual) and variability in N‐limited than in N‐saturated model scenarios, particularly when total precipitation was lower—the opposite was true for denitrification which is more sensitive in N‐saturated than N‐limited scenarios. N export and denitrification increased or decreased more with increasing interannual intermittency than with other changes in precipitation amount. This suggests that under future climate change, prolonged droughts that are followed by more intense storms may pose a major threat to water quality in dryland watersheds.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
