Abstract Almost half of the global terrestrial soil carbon (C) is stored in the northern circumpolar permafrost region, where air temperatures are increasing two times faster than the global average. As climate warms, permafrost thaws and soil organic matter becomes vulnerable to greater microbial decomposition. Long‐term soil warming of ice‐rich permafrost can result in thermokarst formation that creates variability in environmental conditions. Consequently, plant and microbial proportional contributions to ecosystem respiration may change in response to long‐term soil warming. Natural abundance δ13C and Δ14C of aboveground and belowground plant material, and of young and old soil respiration were used to inform a mixing model to partition the contribution of each source to ecosystem respiration fluxes. We employed a hierarchical Bayesian approach that incorporated gross primary productivity and environmental drivers to constrain source contributions. We found that long‐term experimental permafrost warming introduced a soil hydrology component that interacted with temperature to affect old soil C respiration. Old soil C loss was suppressed in plots with warmer deep soil temperatures because they tended to be wetter. When soil volumetric water content significantly decreased in 2018 relative to 2016 and 2017, the dominant respiration sources shifted from plant aboveground and young soil respiration to old soil respiration. The proportion of ecosystem respiration from old soil C accounted for up to 39% of ecosystem respiration and represented a 30‐fold increase compared to the wet‐year average. Our findings show that thermokarst formation may act to moderate microbial decomposition of old soil C when soil is highly saturated. However, when soil moisture decreases, a higher proportion of old soil C is vulnerable to decomposition and can become a large flux to the atmosphere. As permafrost systems continue to change with climate, we must understand the thresholds that may propel these systems from a C sink to a source.
more »
« less
Investigating Thaw and Plant Productivity Constraints on Old Soil Carbon Respiration From Permafrost
Abstract Isotopic radiocarbon (Δ14C) signatures of ecosystem respiration (Reco) can identify old soil carbon (C) loss and serve as an early indicator of permafrost destabilization in a warming climate. Warming also stimulates plant productivity causing plant respiration to dominate Reco Δ14C signatures and potentially obscuring old soil C loss. Here, we investigate how a wide spatio‐temporal gradient of permafrost thaw and plant productivity affects Reco Δ14C patterns and isotopic partitioning. Spatial gradients came from a warming experiment with doubling thaw depth and variable biomass, and a vegetation removal manipulation to eliminate plant contributions. We sampled in August and September to capture transitions from high to low plant productivity, decreased surface soil temperature, and relatively small seasonal thaw extensions. We found that surface processes dominate spatial variation in old soil C loss and a process‐based partitioning approach was crucial for constraining old soil C loss. Resampling the same plots in different times of the year revealed that old soil C losses tripled with cooling surface temperature, and the largest old soil C losses were detected when the organic‐to‐mineral soil horizons thawed (∼50–60 cm). We suggest that the measured increase in old soil respiration over the season and when the organic‐to‐mineral horizon thawed, may be explained by mobilization of nitrogen that stimulates microbial decomposition at depth. Our results suggest that soil C in the organic to mineral horizon may be an important source of soil C loss as the entire Arctic region warms and could lead to nonlinearities in projected permafrost climate feedbacks.
more »
« less
- PAR ID:
- 10445083
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 126
- Issue:
- 6
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate warming in high‐latitude regions is thawing carbon‐rich permafrost soils, which can release carbon to the atmosphere and enhance climate warming. Using a coupled model of long‐term peatland dynamics (Holocene Peat Model, HPM‐Arctic), we quantify the potential loss of carbon with future climate warming for six sites with differing climates and permafrost histories in Northwestern Canada. We compared the net carbon balance at 2100 CE resulting from new productivity and the decomposition of active layer and newly thawed permafrost peats under RCP8.5 as a high‐end constraint. Modeled net carbon losses ranged from −3.0 kg C m−2(net loss) to +0.1 kg C m−2(net gain) between 2015 and 2100. Losses of newly thawed permafrost peat comprised 0.2%–25% (median: 1.6%) of “old” C loss, which were related to the residence time of peat in the active layer before being incorporated into the permafrost, peat temperature, and presence of permafrost. The largest C loss was from the permafrost‐free site, not from permafrost sites. C losses were greatest from depths of 0.2–1.0 m. New C added to the profile through net primary productivity between 2015 and 2100 offset ∼40% to >100% of old C losses across the sites. Differences between modeled active layer deepening and flooding following permafrost thaw resulted in very small differences in net C loss by 2100, illustrating the important role of present‐day conditions and permafrost aggradation history in controlling net C loss.more » « less
-
Summary As Arctic soils warm, thawed permafrost releases nitrogen (N) that could stimulate plant productivity and thus offset soil carbon losses from tundra ecosystems. Although mycorrhizal fungi could facilitate plant access to permafrost‐derived N, their exploration capacity beyond host plant root systems into deep, cold active layer soils adjacent to the permafrost table is unknown.We characterized root‐associated fungi (RAF) that colonized ericoid (ERM) and ectomycorrhizal (ECM) shrub roots and occurred below the maximum rooting depth in permafrost thaw‐front soil in tussock and shrub tundra communities. We explored the relationships between root and thaw front fungal composition and plant uptake of a15N tracer applied at the permafrost boundary.We show that ERM and ECM shrubs associate with RAF at the thaw front providing evidence for potential mycelial connectivity between roots and the permafrost boundary. Among shrubs and tundra communities, RAF connectivity to the thaw boundary was ubiquitous. The occurrence of particular RAF in both roots and thaw front soil was positively correlated with15N recovered in shrub biomassTaxon‐specific RAF associations could be a mechanism for the vertical redistribution of deep, permafrost‐derived nutrients, which may alleviate N limitation and stimulate productivity in warming tundra.more » « less
-
The permafrost region has accumulated organic carbon in cold and waterlogged soils over thousands of years and now contains three times as much carbon as the atmosphere. Global warming is degrading permafrost with the potential to accelerate climate change as increased microbial decomposition releases soil carbon as greenhouse gases. A 19-year time series of soil and ecosystem respiration radiocarbon from Alaska provides long-term insight into changing permafrost soil carbon dynamics in a warmer world. Nine per cent of ecosystem respiration and 23% of soil respiration observations had radiocarbon values more than 50‰ lower than the atmospheric value. Furthermore, the overall trend of ecosystem and soil respiration radiocarbon values through time decreased more than atmospheric radiocarbon values did, indicating that old carbon degradation was enhanced. Boosted regression tree analyses showed that temperature and moisture environmental variables had the largest relative influence on lower radiocarbon values. This suggested that old carbon degradation was controlled by warming/permafrost thaw and soil drying together, as waterlogged soil conditions could protect soil carbon from microbial decomposition even when thawed. Overall, changing conditions increasingly favoured the release of old carbon, which is a definitive fingerprint of an accelerating feedback to climate change as a consequence of warming and permafrost destabilization. This article is part of the Theo Murphy meeting issue ‘Radiocarbon in the Anthropocene’.more » « less
-
Abstract Fire frequency is increasing with climate warming in the boreal regions of interior Alaska, with short fire return intervals (< 50 years) becoming more common. Recent studies suggest these “reburns” will reduce the insulating surface organic layer (SOL) and seedbanks, inhibiting black spruce regeneration and increasing deciduous cover. These changes are projected to amplify soil warming, increasing mineral soil organic carbon (SOC) decomposition rates, and impair re-establishment of understorey vegetation and the SOL. We examined how reburns changed soil temperature, heterotrophic soil respiration (RH), and understorey gross primary production (GPP), and related these to shifts in vegetation composition and SOL depths. Two distinct burn complexes previously covered by spruce were measured; both included areas burned 1x, 2x, and 3x over 60 years and mature (≈ 90 year old) spruce forests underlain by permafrost. A 2.7 °C increase in annual near-surface soil temperatures from 1x to 3x burns was correlated with a decrease in SOL depths and a 1.9 Mg C ha−1increase in annual RH efflux. However, near-surface soil warming accounted for ≤ 23% of higher RH efflux; increases in deciduous overstorey vegetation and root biomass with reburning better correlated with RH than soil temperature. Reburning also warmed deeper soils and reduced the biomass and GPP of understory plants, lessening their potential to offset elevated RH and contribute to SOL development. This suggests that reburning led to losses of mineral SOC previously stored in permafrost due to warming soils and changes in vegetation composition, illustrating how burn frequency creates pathways for accelerated regional C loss.more » « less
An official website of the United States government
