skip to main content


Title: Plant community data collected by Robert H. Whittaker in the Siskiyou Mountains, Oregon and California, USA
Abstract

In 1949–1951, ecologist Robert H. Whittaker sampled plant community composition at 470 sites in the Siskiyou Mountains (Oregon and California; also known as Klamath or Klamath‐Siskiyou Mountains). His primary goal was to develop methods to quantify plant community variation across environmental gradients, following on his seminal work challenging communities as discrete entities. He selected the Siskiyous because of their diverse and endemic‐rich flora, which he attributed to geological complexity and an ancient stable climate. He chose sites to span gradients of topography, elevation, geologic substrate, and distance from the coast. He used the frequencies of indicator species in his data to assign sampling locations to positions on the topographic gradient, nested within the elevational and substrate gradients. He originated in this study the concept of diversity partitioning, in which gamma diversity (species richness of a community) equals alpha diversity (species richness in homogeneous sites) times beta diversity (species turnover among sites along gradients). Diversity partitioning subsequently became highly influential and new developments on it continue. Whittaker published his Siskiyou work covering paleohistory, biogeography, floristics, vegetation, gradient analysis, and diversity partitioning inEcological Monographsin 1960. Discussed in 2 pages of his 60‐page monograph, diversity partitioning accounts for >95% of its current >4300 citations. In 2006, we retrieved Whittaker's Siskiyou data in hard copy from the Cornell University archives and entered them in a database. We used these data for multiple published analyses, including some based on (re)sampling the approximate locations of a subset of his sites. Because of the continued interest in diversity partitioning and in historic data sets, here we present his data, including 359 sampling locations and their descriptors and, for each sample, a list of species with their estimated percent cover (herbs and shrubs) and numbers by diameter at breast height (DBH) category (trees). Site descriptors include the approximate location (road, trail, or stream), elevation, topographic aspect, geologic substrate (serpentine, gabbro, or diorite), and dominant woody vegetation of each location. For 111 sites, including the small number chosen to represent the distance‐to‐coast gradient, we could not locate his data. There are no copyright restrictions and users of these data should cite this data paper in any publications that result from its use. The authors are available for consultations about and collaborations involving the data.

 
more » « less
NSF-PAR ID:
10445099
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
103
Issue:
9
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Biodiversity at larger spatial scales (γ) can be driven by within‐site partitions (α), with little variation in composition among locations, or can be driven by among‐site partitions (β) that signal the importance of spatial heterogeneity. For tropical elevational gradients, we determined the (a) extent to which variation in γ is driven by α‐ or β‐partitions; (b) elevational form of the relationship for each partition; and (c) extent to which elevational gradients are molded by zonation in vegetation or by gradual variation in climatic or abiotic characteristics. We sampled terrestrial gastropods along two transects in the Luquillo Mountains. One passed through multiple vegetation zones (tabonuco, palo colorado, and elfin forests), and one passed through only palm forest. We quantified variation in hierarchical partitions (α, β, and γ) of species richness, evenness, diversity, and dominance, as well as in the content and quality of litter. Total gastropod abundance linearly decreased with increasing elevation along both transects, but was consistently higher in palm than in other forest types. The gradual linear decline in γ‐richness was a consequence of opposing patterns with regard to α‐richness (monotonic decrease) and β‐richness (monotonic increase). For evenness, diversity, and dominance, α‐partitions and γ‐partitions evinced mid‐elevational peaks. The spatial organization of gastropod biodiversity did not mirror the zonation of vegetation. Rather, it was molded by: (a) elevational variation in productivity or nutrient characteristics, (b) the interspersion of palm forest within other forest types, and (c) the cloud condensation point acting as a transition between low and high elevation faunas.

    Abstract in Spanish is available with online material.

     
    more » « less
  2. Abstract Aim

    Mountains provide uniquely informative systems for examining how biodiversity is distributed and identifying the causes of those patterns. Elevational patterns of species richness are well‐documented for many taxa but comparatively few studies have investigated patterns in multiple dimensions of biodiversity along mountainsides, which can reveal the underlying processes at play. Here, we use trait‐based diversity patterns to determine the role of abiotic filters and competition in the assembly of communities of small mammals across elevation and evaluate the surrogacy of taxonomic, functional, and phylogenetic dimensions of diversity.

    Location

    Great Basin ecoregion, western North America.

    Taxon

    Rodents and shrews.

    Methods

    The elevational distributions of 34 species were determined from comprehensive field surveys conducted in three arid, temperate mountain ranges. Elevation–diversity relationships and community assembly processes were inferred from phylogenetic (PD) and functional diversity (FD) patterns of mean pairwise and mean nearest‐neighbor distances while accounting for differences in species richness. FD indices were calculated separately for traits related to either abiotic filtering (β‐niche traits) or biotic interactions (α‐niche traits) to test explicit predictions of the role of each across elevation.

    Results

    Trait‐based tests of processes indicated that abiotic filtering tied to a strong aridity gradient drives the assembly of both low‐ and high‐elevation communities. Support for competition was not consistent with theoretical expectations under the stress‐dominance hypothesis, species interactions‐abiotic stress hypothesis, or guild assembly rule. Mid‐elevation peaks in species richness contrasted with overall FD and PD, which generally increased with elevation. PD and total FD were correlated on two of three mountains.

    Main conclusions

    The functional diversity of small mammal communities in these arid, temperate mountains is most consistent with abiotic filters, whereas support for competition is weak. Decomposing FD into traits related to separate assembly processes and examining ecoregional variation in diversity were critical for uncovering the generality of mechanisms. Divergent patterns among dimensions revealed species richness to be a poor surrogate for PD and FD across elevation and reflect the effect of biogeographic and evolutionary history. This first analysis of elevational multidimensional diversity gradients for temperate mammals provides a versatile framework for future comparative studies.

     
    more » « less
  3. Nitrogen deposition alters forest ecosystems particularly in high elevation, montane habitats where nitrogen deposition is greatest and continues to increase. We collected soils across an elevational (788–1940 m) gradient, encompassing both abiotic (soil chemistry) and biotic (vegetation community) gradients, at eight locations in the southern Appalachian Mountains of southwestern North Carolina and eastern Tennessee. We measured soil chemistry (total N, C, extractable PO4, soil pH, cation exchange capacity [ECEC], percent base saturation [% BS]) and dissected soil fungal communities using ITS2 metabarcode Illumina MiSeq sequencing. Total soil N, C, PO4, % BS, and pH increased with elevation and plateaued at approximately 1400 m, whereas ECEC linearly increased and C/N decreased with elevation. Fungal communities differed among locations and were correlated with all chemical variables, except PO4, whereas OTU richness increased with total N. Several ecological guilds (i.e., ectomycorrhizae, saprotrophs, plant pathogens) differed in abundance among locations; specifically, saprotroph abundance, primarily attributable to genus Mortierella, was positively correlated with elevation. Ectomycorrhizae declined with total N and soil pH and increased with total C and PO4 where plant pathogens increased with total N and decreased with total C. Our results demonstrate significant turnover in taxonomic and functional fungal groups across elevational gradients which facilitate future predictions on forest ecosystem change in the southern Appalachians as nitrogen deposition rates increase and regional temperature and precipitation regimes shift. 
    more » « less
  4. Abstract

    Fungal symbionts can buffer plants from environmental extremes and may affect host capacities to acclimate, adapt, or redistribute under environmental change; however, the distributions of fungal symbionts along abiotic gradients are poorly described. Fungal mutualists should be the most beneficial in abiotically stressful environments, and the structure of networks of plant-fungal interactions likely shift along gradients, even when fungal community composition does not track environmental stress. We sampled 634 unique combinations of fungal endophytes and mycorrhizal fungi, grass species identities, and sampling locations from 66 sites across six replicate altitudinal gradients in the western Colorado Rocky Mountains. The diversity and composition of leaf endophytic, root endophytic, and arbuscular mycorrhizal (AM) fungal guilds and the overall abundance of fungal functional groups (pathogens, saprotrophs, mutualists) tracked grass host identity more closely than elevation. Network structures of root endophytes become more nested and less specialized at higher elevations, but network structures of other fungal guilds did not vary with elevation. Overall, grass species identity had overriding influence on the diversity and composition of above- and belowground fungal endophytes and AM fungi, despite large environmental variation. Therefore, in our system climate change may rarely directly affect fungal symbionts. Instead, fungal symbiont distributions will most likely track the range dynamics of host grasses.

     
    more » « less
  5. Abstract Aim

    Given their high environmental variation over relatively short distances, mountains represent ideal systems for evaluating potential factors shaping diversity gradients. Despite a long‐standing interest in ecological gradients, ant diversity patterns and their related mechanisms occurring on mountains are still not well understood. Here, we (i) describe species diversity patterns (α and β) of leaf‐litter ants along the eastern slope of Cofre de Perote in Veracruz, Mexico; and (ii) evaluate climatic and spatial factors in determining these patterns.

    Location

    Veracruz, Mexico.

    Taxon

    Leaf‐litter ants.

    Methods

    We sampled 320 m2of leaf litter spread across eight equally spaced sites from sea level to 3500 m of elevation. We used regression models to predict α‐diversity patterns with climatic (temperature and precipitation) and spatial (geometric constraints) variables. We also assessed, through multiple regression based on distance matrices (MRM), the relative importance of habitat filtering and dispersal limitations for shaping total dissimilarity (βsor), turnover (βsim) and nestedness (βnes).

    Results

    A hump‐shaped pattern was observed in the α‐diversity. This pattern is best explained by the temperature gradient. β‐diversity showed a nonlinear pattern along the elevational gradient with total dissimilarity and turnover components better explained by habitat filtering (i.e. temperature distances). Turnover had higher contribution to total dissimilarity rather than the nestedness component.

    Main conclusions

    The significance effect of temperature on both α‐ and β‐diversity patterns reinforces its widespread importance in shaping litter ant diversity patterns across elevational gradients. The hump‐shaped pattern in species richness is probably the result of harsh abiotic conditions at the base and the top of the mountain combined with biotic attrition in lowland sites. The niche specialization of ant species in their optimal thermal zones may explain total dissimilarity and ant species replacement along the studied gradient. Taken all together, these results suggest a high relevance of temperature‐driven mechanisms in the origin and maintenance of the biodiversity of such insects and probably another ectothermic taxa.

     
    more » « less