skip to main content


Title: Experimental habitat fragmentation disrupts host–parasite interaction over decades via life‐cycle bottlenecks
Abstract

Habitat loss and fragmentation are likely to seriously impact parasites, a less studied but critical component of ecosystems, yet we lack long‐term experimental evidence. Parasites structure communities, increase connectivity in food webs, and account for a large proportion of an ecosystem's total biomass. Food web models predict that parasites with multiple obligate hosts are at greater risk of extinction because the local extinction, or reduction in abundance, of any host will result in a life‐cycle bottleneck for the parasite. We examine the response of a parasite and its multiple hosts to forest fragmentation over 26 years in the Wog Wog Habitat Fragmentation Experiment in southeastern Australia. The parasite is the nematodeHedruris wogwogensis, its intermediate host is the amphipod,Arcitalitrus sylvaticus, and its definitive host is the skink,Lampropholis guichenoti. In the first decade after fragmentation, nematodes completely disappeared from the matrix (plantation forestry) and all but disappeared from their definitive host (skinks) in fragments, and by the third decade after fragmentation had not appreciably recovered anywhere in the fragmented landscape compared to continuous forest. The low prevalence of the nematode in the fragmented landscape was associated with the low abundance of one or the other host in different decades: low abundance of the intermediate host (amphipod) in the first decade and low abundance of the definitive host (skink) in the third decade. In turn, the low abundance of each host was associated with changes to the abiotic environment over time due largely to the dynamically changing matrix as the plantation trees grew. Our study provides rare long‐term experimental evidence of how disturbance can cause local extinction in parasites with life cycles dependent on more than one host species through population bottlenecks at any life stage. Mismatches in the abundance of multiple hosts over time are likely to be common following disturbance, thus causing parasites with complex life cycles to be particularly susceptible to habitat fragmentation and other disturbances. The integrity of food webs, communities, and ecosystems in fragmented landscapes may be more compromised than presently appreciated due to the sensitivity of parasites to habitat fragmentation.

 
more » « less
NSF-PAR ID:
10445143
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
103
Issue:
9
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Complex life cycle parasites, including helminths, use intermediate hosts for development and definitive hosts for reproduction, with interactions between the two host types governed by food web structure. I study how a parasite's intermediate host range is controlled by the diet breadth of definitive host species and the cost of parasite generalism, a putative fitness cost that assumes host range trades off against fitness derived from a host species. In spite of such costs, a benefit to generalism may occur when the definitive host exhibits a large diet breadth, enhancing transmission of generalist parasites via consumption of a broad array of infected intermediate hosts. I develop a simple theoretical model to demonstrate how different host range infection strategies are differentially selected for across a gradient of definitive host diet breadth according to the cost of generalism. I then use a parasitic helminth–host database in conjunction with a food web database to show that diet breadth of definitive hosts promotes generalist infection strategies at the intermediate host level, indicating relatively low costs of parasite generalism among helminths. 
    more » « less
  2. Abstract

    Classical theory suggests that parasites will exhibit higher fitness in sympatric relative to allopatric host populations (local adaptation). However, evidence for local adaptation in natural host–parasite systems is often equivocal, emphasizing the need for infection experiments conducted over realistic geographic scales and comparisons among species with varied life history traits. Here, we used infection experiments to test how two trematode (flatworm) species (Paralechriorchis syntomenteraandRibeiroia ondatrae) with differing dispersal abilities varied in the strength of local adaptation to their amphibian hosts. Both parasites have complex life cycles involving sequential transmission among aquatic snails, larval amphibians and vertebrate definitive hosts that control dispersal across the landscape. By experimentally pairing 26 host‐by‐parasite population infection combinations from across the western USA with analyses of host and parasite spatial genetic structure, we found that increasing geographic distance—and corresponding increases in host population genetic distance—reduced infection success forPsyntomentera, which is dispersed by snake definitive hosts. For the avian‐dispersedR. ondatrae, in contrast, the geographic distance between the parasite and host populations had no influence on infection success. Differences in local adaptation corresponded to parasite genetic structure; although populations ofPsyntomenteraexhibited ~10% mtDNA sequence divergence, those ofR. ondatraewere nearly identical (<0.5%), even across a 900 km range. Taken together, these results offer empirical evidence that high levels of dispersal can limit opportunities for parasites to adapt to local host populations.

     
    more » « less
  3. Abstract

    Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host–parasite coevolution. The trematode (Levinseniella byrdi) is known to alter the colour and behaviour of its amphipod host (Orchestia grillus) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools forO. grillusincluding a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.

     
    more » « less
  4. Abstract

    Although parasites are ubiquitous in marine ecosystems, predicting the abundance of parasites present within marine ecosystems has proven challenging due to the unknown effects of multiple interacting environmental gradients and stressors. Furthermore, parasites often are considered as a uniform group within ecosystems despite their significant diversity.

    We aim to determine the potential importance of multiple predictors of parasite abundance in coral reef ecosystems, including reef area, island area, human population density, chlorophyll‐a, host diversity, coral cover, host abundance and island isolation.

    Using a model selection approach within a database of more than 1,200 individual fish hosts and their parasites from 11 islands within the Pacific Line Islands archipelago, we reveal that geographic gradients, including island area and island isolation, emerged as the best predictors of parasite abundance.

    Life history moderated the relationship; parasites with complex life cycles increased in abundance with increasing island isolation, while parasites with direct life cycles decreased with increasing isolation. Direct life cycle parasites increased in abundance with increasing island area, although complex life cycle parasite abundance was not associated with island area.

    This novel analysis of a unique dataset indicates that parasite abundance in marine systems cannot be predicted precisely without accounting for the independent and interactive effects of each parasite's life history and environmental conditions.

     
    more » « less
  5. Immunity changes through ontogeny and can mediate facilitative and inhibitory interactions among co-infecting parasite species. In amphibians, most immune memory is not carried through metamorphosis, leading to variation in the complexity of immune responses across life stages. To test if the ontogeny of host immunity might drive interactions among co-infecting parasites, we simultaneously exposed Cuban treefrogs ( Osteopilus septentrionalis ) to a fungus ( Batrachochytrium dendrobaditis , Bd) and a nematode ( Aplectana hamatospicula ) at tadpole, metamorphic and post-metamorphic life stages. We measured metrics of host immunity, host health and parasite abundance. We predicted facilitative interactions between co-infecting parasites as the different immune responses hosts mount to combat these infectious are energetically challenging to mount simultaneously. We found ontogenetic differences in IgY levels and cellular immunity but no evidence that metamorphic frogs were more immunosuppressed than tadpoles. There was also little evidence that these parasites facilitated one another and no evidence that A. hamatospicula infection altered host immunity or health. However, Bd, which is known to be immunosuppressive, decreased immunity in metamorphic frogs. This made metamorphic frogs both less resistant and less tolerant of Bd infection than the other life stages. These findings indicate that changes in immunity altered host responses to parasite exposures throughout ontogeny. This article is part of the theme issue ‘Amphibian immunity: stress, disease and ecoimmunology’. 
    more » « less