skip to main content


Title: Identification of BAHD acyltransferases associated with acylinositol biosynthesis in Solanum quitoense (naranjilla)
Abstract

Plants make a variety of specialized metabolites that can mediate interactions with animals, microbes, and competitor plants. Understanding how plants synthesize these compounds enables studies of their biological roles by manipulating their synthesis in vivo as well as producing them in vitro. Acylsugars are a group of protective metabolites that accumulate in the trichomes of many Solanaceae family plants. Acylinositol biosynthesis is of interest because it appears to be restricted to a subgroup of species within the Solanum genus. Previous work characterized a triacylinositol acetyltransferase involved in acylinositol biosynthesis in the Andean fruit plantSolanum quitoense(lulo or naranjilla). We characterized three additionalS. quitoensetrichome expressed enzymes and found that virus‐induced gene silencing of each caused changes in acylinositol accumulation. pH was shown to influence the stability and rearrangement of the product of ASAT1H and could potentially play a role in acylinositol biosynthesis. Surprisingly, the in vitro triacylinositol products of these enzymes are distinct from those that accumulatein planta. This suggests that additional enzymes are required in acylinositol biosynthesis. These characterizedS. quitoenseenzymes, nonetheless, provide opportunities to test the biological impact and properties of these triacylinositols in vitro.

 
more » « less
NSF-PAR ID:
10445194
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Plant Direct
Volume:
6
Issue:
6
ISSN:
2475-4455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Premise

    Light is critical in the ability of plants to accumulate chlorophyll. When exposed to far‐red (FR) light and then grown in white light in the absence of sucrose, wild‐type seedlings fail to green in a response known as theFRblock of greening (BOG). This response is controlled by phytochrome A through repression of protochlorophyllide reductase‐encoding (POR) genes byFRlight coupled with irreversible plastid damage. Sigma (SIG) factors are nuclear‐encoded proteins that contribute to plant greening and plastid development through regulating gene transcription in chloroplasts and impacting retrograde signaling from the plastid to nucleus.SIGs are regulated by phytochromes, and the expression of someSIGfactors is reduced in phytochrome mutant lines, including phyA. Given the association of phyA with theFR BOGand its regulation ofSIGfactors, we investigated the potential regulatory role ofSIGfactors in theFR BOGresponse.

    Methods

    We examinedFR BOGresponses insigmutants, phytochrome‐deficient lines, and mutant lines for several phy‐associated factors. We quantified chlorophyll levels and examined expression of keyBOG‐associated genes.

    Results

    Among sixsigmutants, only thesig6 mutant significantly accumulated chlorophyll afterFR BOGtreatment, similar to thephyAmutant.SIG6 appears to control protochlorophyllide accumulation by contributing to the regulation of tetrapyrrole biosynthesis associated with glutamyl‐tRNAreductase (HEMA1) function, select phytochrome‐interacting factor genes (PIF4andPIF6), andPENTA1, which regulatesPORAmRNAtranslation afterFRexposure.

    Conclusions

    Regulation ofSIG6plays a significant role in plant responses toFRexposure during theBOGresponse.

     
    more » « less
  2. Summary

    Euonymus alatusdiacylglycerol acetyltransferase (EaDAcT) catalyzes the transfer of an acetyl group from acetyl‐CoA to thesn‐3 position of diacylglycerol to form 3‐acetyl‐1,2‐diacyl‐sn‐glycerol (acetyl‐TAG).EaDAcT belongs to a small, plant‐specific subfamily of the membrane bound O‐acyltransferases (MBOAT) that acylate different lipid substrates. Sucrose gradient density centrifugation revealed thatEaDAcT colocalizes to the same fractions as an endoplasmic reticulum (ER)‐specific marker. By mapping the membrane topology ofEaDAcT, we obtained an experimentally determined topology model for a plantMBOAT. TheEaDAcT model contains four transmembrane domains (TMDs), with both the N‐ and C‐termini orientated toward the lumen of theER. In addition, there is a large cytoplasmic loop between the first and secondTMDs, with theMBOATsignature region of the protein embedded in the thirdTMDclose to the interface between the membrane and the cytoplasm. During topology mapping, we discovered two cysteine residues (C187 and C293) located on opposite sides of the membrane that are important for enzyme activity. In order to identify additional amino acid residues important for acetyltransferase activity, we isolated and characterized acetyltransferases from other acetyl‐TAG‐producing plants. Among them, the acetyltransferase fromEuonymus fortuneipossessed the highest activityin vivoandin vitro. Mutagenesis of conserved amino acids revealed that S253, H257, D258 and V263 are essential forEaDAcT activity. Alteration of residues unique to the acetyltransferases did not alter the unique acyl donor specificity ofEaDAcT, suggesting that multiple amino acids are important for substrate recognition.

     
    more » « less
  3. Summary

    Plants have mechanisms to recognize and reject pollen from other species. Although widespread, these mechanisms are less well understood than the self‐incompatibility (SI) mechanisms plants use to reject pollen from close relatives. Previous studies have shown that some interspecific reproductive barriers (IRBs) are related toSIin the Solanaceae. For example, the pistilSIproteins S‐RNase andHTprotein function in a pistil‐sideIRBthat causes rejection of pollen from self‐compatible (SC) red/orange‐fruited species in the tomato clade. However, S‐RNase‐independentIRBs also clearly contribute to rejecting pollen from these species. We investigated S‐RNase‐independent rejection ofSolanum lycopersicumpollen bySCSolanum pennelliiLA0716,SC.Solanum habrochaitesLA0407, andSCSolanum arcanumLA2157, which lack functional S‐RNase expression. We found that all three accessions expressHTproteins, which previously had been known to function only in conjunction with S‐RNase, and then usedRNAi to test whether they also function in S‐RNase‐independent pollen rejection. SuppressingHTexpression inSCS. pennelliiLA0716 allowsS. lycopersicumpollen tubes to penetrate farther into the pistil inHTsuppressed plants, but not to reach the ovary. In contrast, suppressingHTexpression inSC.Solanum habrochaitesLA0407 and inSCS. arcanumLA2157 allowsS. lycopersicumpollen tubes to penetrate to the ovary and produce hybrids that, otherwise, would be difficult to obtain. Thus,HTproteins are implicated in both S‐RNase‐dependent and S‐RNase‐independent pollen rejection. The results support the view that overall compatibility results from multiple pollen–pistil interactions with additive effects.

     
    more » « less
  4. Summary  
    more » « less
  5. Summary

    Despite well established roles of microRNAs in plant development, few aspects have been addressed to understand their effects in seeds especially on lipid metabolism. In this study, we showed that overexpressing microRNA167A (miR167OE) in camelina (Camelina sativa) under a seed‐specific promoter changed fatty acid composition and increased seed size. Specifically, the miR167OEseeds had a lower α‐linolenic acid with a concomitantly higher linoleic acid content than the wild‐type. This decreased level of fatty acid desaturation corresponded to a decreased transcriptional expression of the camelina fatty acid desaturase3 (CsFAD3) in developing seeds. MiR167 targeted the transcription factor auxin response factor (CsARF8) in camelina, as had been reported previously in Arabidopsis. Chromatin immunoprecipitation experiments combined with transcriptome analysis indicated that CsARF8 bound to promoters of camelinabZIP67andABI3genes. These transcription factors directly or through theABI3‐bZIP12 pathway regulateCsFAD3expression and affect α‐linolenic acid accumulation. In addition, to decipher the miR167A‐CsARF8 mediated transcriptional cascade forCsFAD3suppression, transcriptome analysis was conducted to implicate mechanisms that regulate seed size in camelina. Expression levels of many genes were altered in miR167OE, including orthologs that have previously been identified to affect seed size in other plants. Most notably, genes for seed coat development such as suberin and lignin biosynthesis were down‐regulated. This study provides valuable insights into the regulatory mechanism of fatty acid metabolism and seed size determination, and suggests possible approaches to improve these important traits in camelina.

     
    more » « less