skip to main content


Title: Evidence for a Global Slowdown in Seafloor Spreading Since 15 Ma
Abstract

The rate of ocean‐crust production exerts control over sea level, mantle heat loss, and climate. Different strategies to account for incomplete seafloor preservation have led to differing conclusions about how much production rates have changed since the Cretaceous, if at all. We construct a new global synthesis of crust production along 18 mid‐ocean ridges for the past 19 Myr at high temporal resolution. We find that the global production rate during 6–5 Ma was only 69%–75% of the 16–15 Ma interval. The reduction in crust production is mostly due to slower seafloor spreading along almost all ridge systems. While the total ridge length has varied little since 19 Ma, some fast‐spreading ridges have grown shorter and slow‐spreading ridges grown longer, amplifying the spreading‐rate changes. Our production curves represent a new data set for investigating the forces driving plate motions and the role of tectonic degassing on climate.

 
more » « less
Award ID(s):
1737109
NSF-PAR ID:
10445250
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
6
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present an analysis of geophysical data acquired along a transect of 0–62 Ma crust located on the western flank of the Mid‐Atlantic Ridge at 31°S; all crust was formed at the same ridge segment. Crustal thickness, constrained by five wide‐angle profiles, has mean values of 5.6 km at 6.6 and 15.2 Ma, 7.0 km at 30.6 Ma, 5.5 km at 49.2 Ma, and 3.6 km at 61.2 Ma. Crustal thickness is uniform along each ridge‐parallel profile (standard deviations 0.1–0.3 km), indicating uniform along‐axis magmatic accretion over lateral distances of 40–60 km. The crustal structure of 61.2 Ma crust is not only anomalously thin compared to the other profiles but also contains regions with a linear velocity gradient from seafloor to Moho, which suggests that intense fracturing may extend to the base of the thin crust. Abyssal hill root‐mean‐square heights in the study region are 57–142 m and have an inverse correlation with spreading rate. These values are lower than the average root‐mean‐square height of 196 m elsewhere on the southern Mid‐Atlantic Ridge and indicate relatively high mantle temperatures in our study area. Unsedimented or lightly sedimented basement highs are prevalent at all ages; we argue that bottom currents scour the high topography, transporting sediment into adjacent basement lows. All drillsites planned for International Ocean Discovery Program Expeditions 390 and 393 are within 1–10 km of unsedimented or lightly sedimented basement highs, which should facilitate fluid flow and continued geochemical exchange between crust and seafloor.

     
    more » « less
  2. The South Atlantic Transect (SAT) is a multidisciplinary scientific ocean drilling project that comprises four International Ocean Discovery Program (IODP) expeditions: engineering Expeditions 390C and 395E as well as Expeditions 390 and 393. Altogether, the expeditions aim to recover complete sedimentary sections and the upper 100–350 m of the underlying oceanic crust along a slow/intermediate spreading rate Mid-Atlantic Ridge crustal flow line at ~31°S. The sediments along this transect were originally spot cored more than 50 y ago during Deep Sea Drilling Project Leg 3 (December 1968–January 1969) to help verify the theories of seafloor spreading and plate tectonics. Given dramatic advances in drilling technology and analytical capabilities since Leg 3, many high-priority scientific objectives can be addressed by revisiting the transect. The SAT expeditions target six primary sites on 7, 15, 31, 49, and 61 Ma ocean crust, which fill critical gaps in our sampling of intact in situ ocean crust with regards to crustal age, spreading rate, and sediment thickness. Drilling these sites is required to investigate the history of the low-temperature hydrothermal interactions between the aging ocean crust and the evolving South Atlantic Ocean and quantify past hydrothermal contributions to global biogeochemical cycles. Samples from the transect of the previously unexplored sediment- and basalt-hosted deep biosphere beneath the South Atlantic Gyre are essential to refining global biomass estimates and examining microbial ecosystems’ responses to variable conditions in a low-energy gyre and aging ocean crust. The transect is located near World Ocean Circulation Experiment Line A10, providing access to records of carbonate chemistry and deepwater mass properties across the western South Atlantic through key Cenozoic intervals of elevated atmospheric CO2 and rapid climate change. Reconstruction of the history of the deep western boundary current and deepwater formation in the Atlantic basins will yield crucial data to test hypotheses regarding the role of evolving thermohaline circulation patterns in climate change and the effects of tectonic gateways and climate on ocean acidification. Engineering Expeditions 390C and 395E cored a single hole through the sediment/basement interface with the advanced piston corer/extended core barrel system at five of the six primary proposed SAT sites and installed a reentry system with casing either into basement or within 10 m of basement at each of those five sites. Expedition 390 (7 April–7 June 2022) conducted operations at three of the SAT sites, recovering 700 m of core (77% recovery) over 30.3 days of on-site operations. Sediment coring, basement drilling, and logging were conducted at two sites on 61 Ma crust, and sediment coring was completed at the 7 Ma crust site. At Site U1557 on 61 Ma crust, the drill bit was deposited on the seafloor prior to downhole logging, leaving Hole U1557D available for future deepening and to establish a legacy borehole for basement hydrothermal and microbiological experiments. Expedition 390 scientists additionally described, and analyzed data from, 792 m of core collected during Expeditions 390C and 395E. Expedition 393 plans to operate at four sites, conducting basement drilling and downhole logging at the 7 Ma site, in addition to sediment coring, basement drilling, and logging at the sites intermediate in age. 
    more » « less
  3. Abstract

    The chemical composition of formation waters within the upper basaltic crust were calculated or measured at 24 sites on the northwest portion of the Juan de Fuca (JDF) Plate using data from sediment pore waters, scientific boreholes, and seafloor springs. Formation waters differ in composition across this ridge‐flank region because of variations in water‐rock reactions and residence times, exchange rates with overlying sediment pore waters, and microbial processes along flow paths. We interpret spatial variations in the solute composition of formation waters to resolve areas that are geochemically distinct or similar, lateral trends that result from water transport, areas where water‐rock reactions in the deeper crust are apparent, and sites of seawater recharge and formation water discharge. We provide evidence for large‐scale lateral flow associated with two (mostly) buried basement ridges on ∼1.4 and ∼3.5 Ma seafloor, which are subparallel to the JDF spreading axis to the west. Between these two ridges, where the seafloor and the sediment‐basement interface are relatively flat, formation waters have undergone extensive exchange with overlying sediment pore waters, consistent with a long residence time. Basaltic outcrops provide sites of seawater recharge and hydrothermal discharge, sometimes through the same feature, highlighting the heterogeneous nature of hydrogeologic conditions and processes. This work provides a blueprint for future plate‐scale studies to assess, for example, geologic controls of crustal age, spreading rate, and sedimentation on subsurface hydrologic patterns.

     
    more » « less
  4. null (Ed.)
    The South Atlantic Transect (SAT) is a multidisciplinary scientific ocean drilling project that comprises two International Ocean Discovery Program (IODP) expeditions (390, October–December 2020, and 393, April–June 2021). These expeditions will recover complete sedimentary sections and the upper ~250 m of the underlying oceanic crust along a slow/intermediate spreading rate Mid-Atlantic Ridge crustal flow line at ~31°S. The sediments along this transect were originally spot cored more than 50 y ago during Deep Sea Drilling Project Leg 3 to help verify the theories of seafloor spreading and plate tectonics. Given dramatic advances in drilling technology and analytical capabilities since Leg 3, many high-priority scientific objectives can be addressed by revisiting the transect. The SAT expeditions will target six primary sites on 7, 15, 31, 49, and 61 Ma ocean crust, which will fill critical gaps in our sampling of intact in situ ocean crust with regards to crustal age, spreading rate, and sediment thickness. These sections are required to investigate the history of the low-temperature hydrothermal interactions between the aging ocean crust and the evolving South Atlantic Ocean and quantify past hydrothermal contributions to global geochemical cycles. The transect traverses the previously unexplored sediment- and basalt-hosted deep biosphere beneath the South Atlantic Gyre from which samples are essential to refine global biomass estimates and investigate microbial ecosystems’ responses to variable conditions in a low-energy gyre and aging ocean crust. The drilling operations will include installation of reentry cones and casing to establish legacy boreholes for future basement hydrothermal and microbiological experiments. The transect is also located near World Ocean Circulation Experiment Line A10, providing access to records of carbonate chemistry and deepwater mass properties across the western South Atlantic through key Cenozoic intervals of elevated atmospheric CO2 and rapid climate change. Reconstruction of the history of the deep western boundary current and deepwater formation in the Atlantic basins will yield crucial data to test hypotheses regarding the role of evolving thermohaline circulation patterns in climate change and the effects of tectonic gateways and climate on ocean acidification. 
    more » « less
  5. The South Atlantic Transect (SAT) is a multidisciplinary scientific ocean drilling experiment designed to investigate the evolution of the oceanic crust and overlying sediments across the western flank of the Mid-Atlantic Ridge. This project comprises four International Ocean Discovery Program expeditions: fully staffed Expeditions 390 and 393 (April–August 2022) built on engineering preparations during Expeditions 390C and 395E that took place without science parties during the height of the Coronavirus Disease 2019 (COVID-19) pandemic. Through operations along a crustal flow line at ~31°S, the SAT recovered complete sedimentary sections and the upper ~40–340 m of the underlying ocean crust formed at a slow to intermediate spreading rate at the Mid-Atlantic Ridge over the past ~61 My. The sediments along this transect were originally spot cored more than 50 y ago during Deep Sea Drilling Project Leg 3 (December 1968–January 1969) to help verify the theories of seafloor spreading and plate tectonics. The SAT expeditions targeted six primary sites on 7, 15, 31, 49, and 61 Ma ocean crust that fill critical gaps in our sampling of intact in situ ocean crust with regards to crustal age, spreading rate, and sediment thickness. Drilling these sites was required to investigate the history, duration, and intensity of the low-temperature hydrothermal interactions between the aging ocean crust and the evolving South Atlantic Ocean. This knowledge will improve the quantification of past hydrothermal contributions to global biogeochemical cycles and help develop a predictive understanding of the impacts of variable hydrothermal processes and exchanges. Samples from the transect of the previously unexplored sediment- and basalt-hosted deep biosphere beneath the South Atlantic Gyre are essential to refine global biomass estimates and examine microbial ecosystems’ responses to variable conditions in a low-energy gyre and aging ocean crust. The transect is located near World Ocean Circulation Experiment Line A10, which provides a baseline for records of carbonate chemistry and deepwater mass properties across the western South Atlantic through key Cenozoic intervals of elevated atmospheric CO2 and rapid climate change. Reconstruction of the history of the deep western boundary current and deepwater formation in the Atlantic basins will yield crucial data to test hypotheses regarding the role of evolving thermohaline circulation patterns in climate change and the effects of tectonic gateways and climate on ocean acidification. During engineering Expeditions 390C and 395E, a single hole was cored through the sediment cover and into the uppermost rocks of the ocean crust with the advanced piston corer (APC) and extended core barrel (XCB) systems at five of the six primary proposed SAT sites. Reentry systems with casing were then installed either into basement or within 10 m of basement at each of those five sites. Expedition 390 (7 April–7 June 2022) conducted operations at three of the SAT sites, recovering 700 m of core (77%) over 30.3 days of on-site operations. Sediment coring, basement coring, and wireline logging were conducted at two sites on 61 Ma crust (Sites U1556 and U1557), and sediment coring was completed at the 7 Ma Site U1559. Expedition 393 operated at four sites, drilling in 12 holes to complete this initial phase of the SAT. Complete sedimentary sections were collected at Sites U1558, U1583, and U1560 on 49, 31, and 15 Ma crust, respectively, and together with 257.7 m of sediments cored during earlier operations, more than 600 m of sediments was characterized. The uppermost ocean crust was drilled at Sites U1558, U1560, and U1583 with good penetration (~130 to ~204 meters subbasement), but at the youngest ~7 Ma Site U1559, only ~43 m of basement penetration was achieved in this initial attempt. Geophysical wireline logs were aquired at Sites U1583 and U1560. Expeditions 390 and 393 established legacy sites available for future deepening and downhole basement hydrothermal and microbiological experiments at Sites U1557, U1560, and U1559 on 61, 15, and 7 Ma crust, respectively. 
    more » « less