Abstract Main‐group element‐mediated C−H activation remains experimentally challenging and the development of clear concepts and design principles has been limited by the increased reactivity of relevant complexes, especially for the heavier elements. Herein, we report that the stibenium ion [(pyCDC)Sb][NTf2]3(1) (pyCDC=bis‐pyridyl carbodicarbene; NTf2=bis(trifluoromethanesulfonyl)imide) reacts with acetonitrile in the presence of the base 2,6‐di‐tert‐butylpyridine to enable C(sp3)−H bond breaking to generate the stiba‐methylene nitrile complex [(pyCDC)Sb(CH2CN)][NTf2]2(2). Kinetic analyses were performed to elucidate the rate dependence for all the substrates involved in the reaction. Computational studies suggest that C−H activation proceeds via a mechanism in which acetonitrile first coordinates to the Sb center through the nitrogen atom in a κ1fashion, thereby weakening the C−H bond which can then be deprotonated by base in solution. Further, we show that1reacts with terminal alkynes in the presence of 2,6‐di‐tert‐butylpyridine to enable C(sp)−H bond breaking to form stiba‐alkynyl adducts of the type [(pyCDC)Sb(CCR)][NTf2]2(3 a–f). Compound1shows excellent specificity for the activation of the terminal C(sp)−H bond even across alkynes with diverse functionality. The resulting stiba‐methylene nitrile and stiba‐alkynyl adducts react with elemental iodine (I2) to produce iodoacetonitrile and iodoalkynes, while regenerating an Sb trication. 
                        more » 
                        « less   
                    
                            
                            Pd II ‐Catalyzed C(alkenyl)−H Activation Facilitated by a Transient Directing Group**
                        
                    
    
            Abstract Palladium(II)‐catalyzed C(alkenyl)−H alkenylation enabled by a transient directing group (TDG) strategy is described. The dual catalytic process takes advantage of reversible condensation between an alkenyl aldehyde substrate and an amino acid TDG to facilitate coordination of the metal catalyst and subsequent C(alkenyl)−H activation by a tailored carboxylate base. The resulting palladacycle then engages an acceptor alkene, furnishing a 1,3‐diene with high regio‐ andE/Z‐selectivity. The reaction enables the synthesis of enantioenriched atropoisomeric 2‐aryl‐substituted 1,3‐dienes, which have seldom been examined in previous literature. Catalytically relevant alkenyl palladacycles were synthesized and characterized by X‐ray crystallography, and the energy profiles of the C(alkenyl)−H activation step and the stereoinduction model were elucidated by density functional theory (DFT) calculations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2046286
- PAR ID:
- 10445259
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 61
- Issue:
- 25
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Rh(I)‐catalyzed C8‐selective C−H alkenylation and arylation of 1,2,3,4‐tetrahydroquinolines with alkenyl and aryl carboxylic acids under microwave assistance have been realized. Using [Rh(CO)2(acac)] as the catalyst and Piv2O as the acid activator, 1,2,3,4‐tetrahydroquinolines undergo C8‐selective decarbonylative C−H alkenylation with a wide range of alkenyl and aryl carboxylic acids, affording the C8‐alkenylated or arylated 1,2,3,4‐tetrahydroquinolines. This method enables the synthesis of C8‐alkenylated 1,2,3,4‐tetrahydroquinolines that would otherwise be difficult to access by means of conventional C−H alkenylation protocols. Moreover, this catalytic system also works well in C8‐selective decarbonylative C−H arylation of 1,2,3,4‐tetrahydroquinolines with aryl carboxylic acids. The catalytic activity strongly depends on the choice of theN‐directing group, with the readily installable and removableN‐(2‐pyrimidyl) group being optimal. The catalytic pathway is elucidated by mechanistic experiments.more » « less
- 
            Abstract The first RhI‐catalyzed, directed decarbonylative C2−H alkenylation of imidazoles with readily available alkenyl carboxylic acids is reported. The reaction proceeds in a highly regio‐ and stereoselective manner, providing efficient access to C2‐alkenylated imidazoles that are generally inaccessible by known C−H alkenylation methods. This transformation accommodates a wide range of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, and diversely decorated imidazoles with high functional group compatibility. The presence of a removable pyrimidine directing group and the use of a bidentate phosphine ligand are pivotal to the success of the catalytic reaction. This process is also suitable for benzimidazoles. Importantly, the scalability and diversification of the products highlight the potential of this protocol in practical applications. Detailed experimental and computational studies provide important insights into the underlying reaction mechanism.more » « less
- 
            null (Ed.)The title complexes, (η 4 -cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C 5 H 8 N 2 ) 2 (C 8 H 12 )]I, ( 1 ) and (η 4 -cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C 7 H 12 N 2 ) 2 (C 8 H 12 )]I, ( 2 ), were prepared using a modified literature method. After carrying out the oxidative addition of the amino acid L-proline to [Ir(COD)(IMe) 2 ]I in water and slowly cooling the reaction to room temperature, a suitable crystal of 1 was obtained and analyzed by single-crystal X-ray diffraction at 100 K. Although this crystal structure has previously been reported in the Pbam space group, it was highly disordered and precise atomic coordinates were not calculated. A single crystal of 2 was also obtained by heating the complex in water and letting it slowly cool to room temperature. Complex 1 was found to crystallize in the monoclinic space group C 2/ m , while 2 crystallizes in the orthorhombic space group Pccn , both with Z = 4.more » « less
- 
            Abstract A modular platform for facile access to 1,2,3,9‐tetrahydro‐4H‐carbazol‐4‐ones (H4‐carbazolones) and 3,4‐dihydrocyclopenta[b]indol‐1(2H)‐ones (H2‐indolones) is described. The requisite 6‐ and 5‐membered 2‐arylcycloalkane‐1,3‐dione precursors were readily obtained through a Cu‐catalyzed arylation of 1,3‐cyclohexanediones or by a ring expansion of aryl succinoin derivatives. Enolization of one carbonyl group in the diones, conversion to a leaving group, and subsequent azidation gave 2‐aryl‐3‐azidocycloalk‐2‐en‐1‐ones. This two‐step, one‐pot azidation is highly regioselective with unsymmetrically substituted 2‐arylcyclohexane‐1,3‐diones. The regioselectivity, which is important for access to single isomers of 3,3‐disubstituted carbazolones, was analyzed mechanistically and computationally. Finally, a Rh‐catalyzed nitrene/nitrenoid insertion into theorthoC−H bond of the aryl moiety gave the H4‐carbazolones and H2‐indolones. One carbazolone was elaborated to an intermediate reported in the total synthesis ofN‐decarbomethoxychanofruticosinate, (−)‐aspidospermidine, (+)‐kopsihainanine A. With 2‐phenylcycloheptane‐1,3‐dione, prepared from cyclohexanone and benzaldehyde, the azidation reaction was readily accomplished. However, the Rh‐catalyzed reaction unexpectedly led to a labile but characterizable azirine rather than the indole derivative. Computations were performed to understand the differences in reactivities of the 5‐ and 6‐membered 2‐aryl‐3‐azidocycloalk‐2‐en‐1‐ones in comparison to the 7‐membered analogue, and to support the structural assignment of the azirine.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
