skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Seasonal Variations of Gravity Wave Induced Thermal and Constituent Diffusivities in the Mesopause Region Above Ft. Collins, CO (40.6°N, 105.1°W)
Abstract

Quasi‐random vertical displacement fluctuations, caused by the spectrum of non‐breaking gravity waves, mix the atmosphere, similar to turbulence, which induces significant vertical transport of heat and constituents in the upper atmosphere. Multi‐decade observations of temperature, made between 85 and 100 km with a Na lidar at Colorado State University (CSU, 40.6°N, 105.1°W), are used to derive the seasonal variations of the wave‐induced thermal (KH) and constituent (KWave) diffusivities. Both show strong annual oscillations with maxima in winter, which increase with increasing altitude.KHandKWaveexhibit summer minima of ∼40 and ∼70 m2s−1, respectively, that are approximately constant with altitude. In winter,KHvaries from ∼50 at 85 to ∼180 m2s−1at 100 km, whileKWavevaries from ∼110 at 85 to ∼340 m2s−1at 100 km. These values are much larger than the eddy diffusivity (Kzz∼ 35 m2s−1) predicted for this site by the Whole Atmosphere Community Climate Model. The CSU diffusivities are comparable to similar measurements made at other mid‐latitude mountain sites in both hemispheres, and derived from global observations of atomic O. However, the seasonal variations differ from the O observations, which may reflect differences in wave sources at these sites and the different approaches employed to derive the wave diffusivities. Even so, the CSU results demonstrate that heat and constituent transport by unresolved, non‐breaking gravity waves are important processes that need to be incorporated in global chemistry models to properly characterize the thermal and constituent structure of the upper atmosphere.

 
more » « less
Award ID(s):
2029162
NSF-PAR ID:
10445353
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
127
Issue:
11
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Vertical energy transports due to dissipating gravity waves in the mesopause region (85–100 km) are analyzed using over 400 h of observational data obtained from a narrow‐band sodium wind‐temperature lidar located at Andes Lidar Observatory (ALO), Cerro Pachón (30.25°S, 70.73°W), Chile. Sensible heat flux is directly estimated using measured temperature and vertical wind; energy flux is estimated from the vertical wavenumber and frequency spectra of temperature perturbations; and enthalpy flux is derived based on its relationship with sensible heat and energy fluxes. Sensible heat flux is mostly downward throughout the region. Enthalpy flux exhibits an annual oscillation with maximum downward transport in July above 90 km. The dominant feature of energy flux is the exponential decrease from 10−2to 10−4 W m−2with the altitude increases from 85 to 100 km and is larger during austral winter. The annual mean thermal diffusivity inferred from enthalpy flux decreases from 303 m2s−1at 85 km to minimum 221 m2s−1at 90 km then increases to 350 m2s−1at 99 km. Results also show that shorter period gravity waves tend to dissipate at higher altitudes and generate more heat transport. The averaged vertical group velocities for high, medium, and low frequency waves are 4.15 m s−1, 1.15 m s−1, and 0.70 m s−1, respectively. Gravity wave heat transport brings significant cooling in the mesopause region at an average cooling rate of 6.7 ± 1.1 K per day.

     
    more » « less
  2. Abstract

    The gravity wave drag parametrization of the Whole Atmosphere Community Climate Model (WACCM) has been modified to include the wave‐driven atmospheric vertical mixing caused by propagating, non‐breaking, gravity waves. The strength of this atmospheric mixing is represented in the model via the “effective wave diffusivity” coefficient (Kwave). UsingKwave, a new total dynamical diffusivity (KDyn) is defined.KDynrepresents the vertical mixing of the atmosphere by both breaking (dissipating) and vertically propagating (non‐dissipating) gravity waves. Here we show that, when the new diffusivity is used, the downward fluxes of Fe and Na between 80 and 100 km largely increase. Larger meteoric ablation injection rates of these metals (within a factor 2 of measurements) can now be used in WACCM, which produce Na and Fe layers in good agreement with lidar observations. Mesospheric CO2is also significantly impacted, with the largest CO2concentration increase occurring between 80 and 90 km, where model‐observations agreement improves. However, in regions where the model overestimates CO2concentration, the new parametrization exacerbates the model bias. The mesospheric cooling simulated by the new parametrization, while needed, is currently too strong almost everywhere. The summer mesopause in both hemispheres becomes too cold by about 30 K compared to observations, but it shifts upward, partially correcting the WACCM low summer mesopause. Our results highlight the far‐reaching implications and the necessity of representing vertically propagating non‐breaking gravity waves in climate models. This novel method of modeling gravity waves contributes to growing evidence that it is time to move away from dissipative‐only gravity wave parametrizations.

     
    more » « less
  3. Abstract

    Utilizing 956 nights of Na lidar nocturnal mesopause region temperature profiles acquired at Fort Collins, CO (40.6°N, 105.1°W) over a 20‐year period (March 1990–2010), we deduce background nightly mean temperatureand the square of the buoyancy frequencyN2(z) at 2‐km resolution between 83 and 105 km. The temperature climatology reveals the two‐level mesopause structure with clarity and sharp mesopause transitions, resulting in 102 days of summer from Days 121 to 222 of the year. The same data set analyzed at 10‐min and 1‐km resolution gives the gravity wave (GW) temperature perturbationsTi'(z) and the wave varianceVar(T′(z)) and GW potential energyEpm(z) between 85 and 100 km. Seasonal averages of GWVar(T′(z)) andEpm(z) between 90 and 100 km, show thatVar(T′) for spring and autumn are comparable and lower than for summer and winter. Due mainly to the higher background stability, or largerN2(z) in summer,Epm(z) between 85 and 100 km is comparable in spring, summer, and autumn seasons, but ∼30%–45% smaller than the winter values at the same altitude. The uncertainties are about 4% for winter and about 5% for the other three seasons. The values forEpmare (156.0, 176.2, 145.6, and 186.2 J/kg) at 85 km for (spring, summer, autumn, and winter) respectively, (125.4, 120.2, 115.2, and 168.7 J/kg) at 93 km, and (207.5, 180.5, 213.1, and 278.6 J/kg) at 100 km. Going up in altitude, all profiles first decrease and then increase, suggesting that climatologically, GWs break below 85 km.

     
    more » « less
  4. Abstract

    We report the first lidar observations of vertical fluxes of sensible heat and meteoric Na from 78 to 110 km in late May 2020 at McMurdo, Antarctica. The measurements include contributions from the complete temporal spectrum of gravity waves and demonstrate that wave‐induced vertical transport associated with atmospheric mixing by non‐breaking gravity waves, Stokes drift imparted by the wave spectrum, and perturbed chemistry of reactive species, can make significant contributions to constituent and heat transport in the mesosphere and lower thermosphere (MLT). The measured sensible heat and Na fluxes exhibit downward peaks at 84 km (−3.0 Kms−1and −5.5 × 104 cm−2s−1) that are ∼4 km lower than the flux peak altitudes observed at midlatitudes. This is likely caused by the strong downwelling over McMurdo in late May. The Na flux magnitude is double the maximum at midlatitudes, which we believe is related to strong persistent gravity waves in the MLT at McMurdo. To achieve good agreement between the measured Na flux and theory, it was necessary to infer that a large fraction of gravity wave energy was propagating downward, especially between 80 and 95 km where the Na flux and wave dissipation were largest. These downward propagating waves are likely secondary waves generated in‐situ by the dissipation of primary waves that originate from lower altitudes. The sensible heat flux transitions from downward below 90 km to upward from 97 to 106 km. The observations are explained with the fully compressible solutions for polarization relations of primary and secondary gravity waves withλz > 10 km.

     
    more » « less
  5. Abstract

    Pore size distribution and surface chemistry of bio‐derived (milk) microporous dominated carbon “MDC” is synergistically tuned, allowing for promising carbon capture in a dry CO2atmosphere and in mixed H2O–CO2. The capture capacity is attributed to the synergy of a large total surface area with an ultramicroporous and microporous texture (e.g.,Stot1889 m2g−1,Smic1755 m2g−1,Sultra1393 m2g−1), and a high content of nitrogen and oxygen heteroatom moieties (e.g., 5 at% N, 10.5 at% O). Tailored two‐step low‐temperature pyrolysis‐chemical activation is employed to take advantage of the intrinsic properties of the precursor, allowing for this unusual textural properties‐heteroatoms combination. For example, tested at 1 bar and 295 or 273 K, MDCs adsorb up to 22.0 and 29.4 wt% CO2, respectively. MDCs are also tailored to be hydrophobic, with CO2/H2O adsorption selectivity even after prolonged cycling. Maximum working capacities of 10.8 wt% for pure CO2and 3.5 wt% for a flue gas simulant (15% CO2, 85% N2) are measured using temperature swing adsorption with dynamic purge gases, while being minimally affected by humid conditions. This work is directly aligned with the United Nation’s Sustainable Development Goal 13, take urgent action to combat climate change and its impacts.

     
    more » « less