skip to main content


Title: A 250‐Year, Decadally Resolved, Radiocarbon Time History in the Gulf of Maine Reveals a Hydrographic Regime Shift at the End of the Little Ice Age
Abstract

In order to document relative changes in water mass contributions in the Gulf of Maine (GoM), we used the shell material of the long‐lived ocean quahog (Arctica islandica). A multicentury, crossdated master shell growth chronology facilitated the reconstruction of a radiocarbon Δ14C history prior to the radiocarbon bomb‐pulse of the 1950s. This reconstruction reveals a highly variable Δ14C series (mean = −56.6 ± 8.0‰ (1σ);N = 34) from CE 1685 to 1935. Δ14C values indicate a rapid shift ca. 1860 CE in source waters to the GoM. From CE 1685 to 1860, GoM waters were dominated by an admixture of Warm Slope Water primarily composed of tropical Atlantic surface waters/Gulf Stream Waters, and Scotian Shelf Water. This water regime was followed by a rapid Δ14C transition to a Labrador Slope Water endmember after CE 1860, with an apparent decrease in Scotian Shelf Water. Together, this shift is likely related to broader changes in the Arctic and the Labrador Sea, and a short‐term strengthening of the Atlantic meridional overturning circulation. Labrador Slope Water dominating GoM hydrography in the 1900s is verified by the similarities between this record and other coral‐ and shell‐derived Δ14C records influenced by waters with Labrador Sea origin. This suggests that GoM radiocarbon variability broadly reflects large‐scale ocean circulation processes in the Northwestern Atlantic. The lack of Δ14C values much below the Labrador Slope Water endmember suggests that the interior GoM gets very little to no Antarctic Intermediate Water as other studies had previously suggested.

 
more » « less
NSF-PAR ID:
10445361
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
125
Issue:
9
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ocean warming linked to anthropogenic climate change is impacting the ecology of marine species around the world. In 2010, the Gulf of Maine and Scotian Shelf regions of the Northwest Atlantic underwent an unprecedented regime shift. Forced by climate-driven changes in the Gulf Stream, warm slope waters entered the region and created a less favorable foraging environment for the endangered North Atlantic right whale population. By mid-decade, right whales had shifted their late spring/summer foraging grounds from the Gulf of Maine and the western Scotian Shelf to the Gulf of St. Lawrence. The population also began exhibiting unusually high mortality in 2017. Here, we report that climate-driven changes in ocean circulation have altered the foraging environment and habitat use of right whales, reducing the population’s calving rate and exposing it to greater mortality risks from ship strikes and fishing gear entanglement. The case of the North Atlantic right whale provides a cautionary tale for the management of protected species in a changing ocean. 
    more » « less
  2. Abstract

    The Gulf of Maine North Atlantic Time Series (GNATS) has been run since 1998, across the Gulf of Maine (GoM), between Maine and Nova Scotia. GNATS goals are to provide ocean color satellite validation and to examine change in this coastal ecosystem. We have sampled hydrographical, biological, chemical, biogeochemical, and bio‐optical variables. After 2008, warm water intrusions (likely North Atlantic Slope Water [NASW]) were observed in the eastern GoM at 50–180 m depths. Shallow waters (<50 m) significantly warmed in winter, summer, and fall butcooledduring spring. Surface salinity and density of the GoM also significantly increased over the 20 years. Phytoplankton standing stock and primary production showed highly‐significant decreases during the period. Concentrations of phosphate increased, silicate decreased, residual nitrate [N*; nitrate‐silicate] increased, and the ratio of dissolved inorganic nitrogen:phosphate decreased, suggesting increasing nitrogen limitation. Dissolved organic carbon (DOC) and its optical indices generally increased over two decades, suggesting changes to the DOC cycle. Surface seawater carbonate chemistry showed winter periods where the aragonite saturation (Ωar) dropped below 1.6 gulf‐wide due to upward winter mixing of cool, corrosive water. However, associated with increased average GoM temperatures, Ωarhas significantly increased. These results reinforce the hypothesis that the observed decrease in surface GoM primary production resulted from a switch from Labrador Sea Water to NASW entering the GoM. A multifactor analysis shows that decreasing GoM primary production is most significantly correlated to decreases in chlorophyll and particulate organic carbon plus increases in N* and temperature.

     
    more » « less
  3. Abstract

    Neodymium (Nd) isotopic composition (εNd) is an important tracer for water mass mixing and the reconstruction of past ocean circulation. To allow for a direct model‐data comparison, we have implemented Nd isotopes in the ocean component of the Community Earth System Model (CESM1.3). The model is able to capture the major features of the observed modern distribution of bothεNdand Nd concentrations. Our model provides a useful tool for the interpretation ofεNdreconstructions. For example, we show that in an idealized North Atlantic freshwater hosing experiment,εNdchanges in the Atlantic are documenting primarily the changes in water mass mixing and are hardly affected by the concomitant and large changes in the marine biological productivity and organic matter fluxes. However, the hosing experiment also shows that the end‐member changes due to the change of ocean circulation can influence the interpretation ofεNdin the Atlantic, depending on the location. The implementation of Nd, together with other existing tracers, such as δ18O,231Pa/230Th, δ13C, and radiocarbon in the same model, can improve our understanding of past ocean circulation significantly.

     
    more » « less
  4. Abstract

    During the last deglaciation Earth’s climate experienced strong and abrupt variations, resulting in major changes in global temperature, sea level, and ocean circulation. Although proxy records have significantly improved our understanding of climate during this period, questions remain regarding the connection between ocean circulation evolution and resulting geotracer distributions, including those of deep waters in the Pacific. Here we use the C‐iTRACE simulation, a transient ocean‐only, isotope‐enabled version of the Community Earth System Model, to better understand deglacial deep Pacific radiocarbon evolution in the context of circulation and reservoir age changes. Throughout the deglaciation, the Pacific Ocean circulation in C‐iTRACE responds strongly to glacial meltwater forcing, leading to large changes in deep Pacific Δ14C age. A multi‐millennial weakening of the overturning circulation from 20 to 15 ka BP leads to increases in deep Pacific Δ14C ages, but from 20 to 18 ka BP, nearly half (40%–60%) of this aging is controlled by changing surface reservoir age, corroborating previous studies showing that Δ14C is not solely a circulation age tracer. As the deglaciation proceeds, circulation change controls progressively more of the Δ14C age, accounting for more than 75% of it across the deep Pacific from 15 to 8 ka BP.

     
    more » « less
  5. Abstract

    Copepod size and energy content are influenced by regional and seasonal variation in temperature and food conditions, with implications for planktivorous consumers such as the endangered North Atlantic right whale (Eubalaena glacialis). Historical data (1990–2020) on Calanus finmarchicus stage CV copepodite prosome length and oil sac metrics were analyzed to determine the extent of variation in individual body size and estimated lipid and energy content in five regions of the Northwest Atlantic continental shelves [Gulf of Maine (GoM), Scotian Shelf (SS), Gulf of St. Lawrence (GSL), St. Lawrence Estuary (SLE) and Newfoundland Shelf]. Large-scale spatial patterns in size and lipid content were related to latitude, indicating that C. finmarchicus CV in the GSL and SLE were historically larger in body size, and had significantly higher lipid content compared with those in the GoM and the SS. The observed patterns of C. finmarchicus CV size and lipid storage capacity suggest that regional variation in whale prey energy content can play a role in the suitability of current and future whale foraging habitats in the Northwest Atlantic, with the larger lipid-rich individuals in the GSL providing a high-quality diet compared with those in southern areas.

     
    more » « less