skip to main content


Title: Impact Versus Frictional Earthquake Models for High‐Frequency Radiation in Complex Fault Zones
Abstract

Earthquakes occur within complex fault zones containing numerous intersecting fault strands. This complexity poses a computational challenge for rupture models, which typically simplify fault structure to a small number of rough fault surfaces, with all other deformation assumed to be off‐fault viscoplastic deformation. In such models, high‐frequency ground motions originate solely from frictionally mediated, heterogeneous slip on a small number of potentially rough fault surfaces or from off‐fault viscoplastic deformation. Alternative explanations for high‐frequency ground motion generation that can account for a larger number of fault surfaces remain difficult to assess. Here, we evaluate the efficacy of a recently proposed stochastic impact model in which high‐frequency ground motion is caused by elastic impacts of structures within a complex fault zone. Impacts are envisioned to occur in response to fault motion in the presence of geometrical incompatibilities, which promotes transfer of slip onto different fault strands on timescales mediated by elasticity. We investigate the role of a complex fault zone for high‐frequency ground motion by comparing the underlying assumptions and resulting predictions of impact and rough fault frictional models. Relative to rough fault frictional models, impact models are characterized by deformation timescales and corner frequencies that are set by elasticity rather than viscoplasticity, relatively angular rather than smoothly varying fault roughness geometries, high‐frequency radiation patterns that are more isotropic, and higherP/Sradiated energies. We outline ways to discriminate whether impact or rough fault frictional models are more likely to explain observations of high‐frequency ground motions.

 
more » « less
NSF-PAR ID:
10445366
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
8
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A fundamental question of earthquake science is what produces damaging high‐frequency ground motion, with the classic Brune‐Haskell model postulating that abrupt fault slip causes it. However, even when amended with heterogeneous rupture, the model fails to explain observations of different sized repeating earthquakes and has challenges explaining high‐frequency radiation patterns. We propose an additional cause for high‐frequency earthquake spectra from elastic collisions of structures within a rupturing fault zone. The collision spectrum is set by an impact contact time proportional to the size of colliding structures so that spectra depend on fundamentally different physical parameters compared with slip models. When added to standard models, collisions can reconcile the discrepant observations since the size, shape, and orientation of structures vary between different fault zones but remain constant within a fault segment. High‐frequency earthquake ground motions and damage may therefore be an outgrowth of fault‐zone structure rather than sudden initiation of slip.

     
    more » « less
  2. Abstract

    The Húsavík‐Flatey Fault Zone (HFFZ) is the largest strike‐slip fault in Iceland and poses a high seismic risk to coastal communities. To investigate physics‐based constraints on earthquake hazards, we construct three fault system models of varying geometric complexity and model 79 3‐D multi‐fault dynamic rupture scenarios in the HFFZ. By assuming a simple regional prestress and varying hypocenter locations, we analyze the rupture dynamics, fault interactions, and the associated ground motions up to 2.5 Hz. All models account for regional seismotectonics, topo‐bathymetry, 3‐D subsurface velocity, viscoelastic attenuation, and off‐fault plasticity, and we explore the effect of fault roughness. The rupture scenarios obey earthquake scaling relations and predict magnitudes comparable to those of historical events. We show how fault system geometry and segmentation, hypocenter location, and prestress can affect the potential for rupture cascading, leading to varying slip distributions across different portions of the fault system. Our earthquake scenarios yield spatially heterogeneous near‐field ground motions modulated by geometric complexities, topography, and rupture directivity, particularly in the near‐field. The average ground motion attenuation characteristics of dynamic rupture scenarios of comparable magnitudes and mean stress drop are independent of variations in source complexity, magnitude‐consistent and in good agreement with the latest regional empirical ground motion models. However, physics‐based ground motion variability changes considerably with fault‐distance and increases for unilateral compared to bilateral ruptures. Systematic variations in physics‐based near‐fault ground motions provide important insights into the mechanics and potential earthquake hazard of large strike‐slip fault systems, such as the HFFZ.

     
    more » « less
  3. Abstract

    Localized frictional sliding on faults in the continental crust transitions at depth to distributed deformation in viscous shear zones. This brittle‐ductile transition (BDT), and/or the transition from velocity‐weakening (VW) to velocity‐strengthening (VS) friction, are controlled by the lithospheric thermal structure and composition. Here, we investigate these transitions, and their effect on the depth extent of earthquakes, using 2D antiplane shear simulations of a strike‐slip fault with rate‐and‐state friction. The off‐fault material is viscoelastic, with temperature‐dependent dislocation creep. We solve the heat equation for temperature, accounting for frictional and viscous shear heating that creates a thermal anomaly relative to the ambient geotherm which reduces viscosity and facilitates viscous flow. We explore several geotherms and effective normal stress distributions (by changing pore pressure), quantifying the thermal anomaly, seismic and aseismic slip, and the transition from frictional sliding to viscous flow. The thermal anomaly can reach several hundred degrees below the seismogenic zone in models with hydrostatic pressure but is smaller for higher pressure (and these high‐pressure models are most consistent with San Andreas Fault heat flow constraints). Shear heating raises the BDT, sometimes to where it limits rupture depth rather than the frictional VW‐to‐VS transition. Our thermomechanical modeling framework can be used to evaluate lithospheric rheology and thermal models through predictions of earthquake ruptures, postseismic and interseismic crustal deformation, heat flow, and the geological structures that reflect the complex deformation beneath faults.

     
    more » « less
  4. ABSTRACT Frictional heating during earthquake rupture raises the fault-zone fluid pressure, which affects dynamic rupture and seismic radiation. Here, we investigate two key parameters governing thermal pressurization of pore fluids – hydraulic diffusivity and shear-zone half-width – and their effects on earthquake rupture dynamics, kinematic source properties, and ground motions. We conduct 3D strike-slip dynamic rupture simulations assuming a rate-and-state dependent friction law with strong velocity weakening coupled to thermal-pressurization of pore fluids. Dynamic rupture evolution and ground shaking are densely evaluated across the fault and Earth’s surface to analyze the variations of rupture parameters (slip, peak slip rate, rupture speed, and rise time), correlations among rupture parameters, and variability of peak ground velocity. Our simulations reveal how variations in thermal-pressurization affect earthquake rupture properties. We find that the mean slip and rise time decrease with increasing hydraulic diffusivity, whereas mean rupture speed and peak slip-rate remain almost constant. Mean slip, peak slip-rate, and rupture speed decrease with increasing shear-zone half-width, whereas mean rise time increases. Shear-zone half-width distinctly affects the correlation between rupture parameters, especially for parameter pairs (slip, rupture speed), (peak slip-rate, rupture speed), and (rupture speed, rise time). Hydraulic diffusivity has negligible effects on these correlations. Variations in shear-zone half-width primarily impact rupture speed, which then may affect other rupture parameters. We find a negative correlation between slip and peak slip-rate, unlike simpler dynamic rupture models. Mean peak ground velocities decrease faster with increasing shear-zone half-width than with increasing hydraulic diffusivity, whereas ground-motion variability is similarly affected by both the parameters. Our results show that shear-zone half-width affects rupture dynamics, kinematic rupture properties, and ground shaking more strongly than hydraulic diffusivity. We interpret the importance of shear-zone half-width based on the characteristic time of diffusion. Our findings may inform pseudodynamic rupture generators and guide future studies on how to account for thermal-pressurization effects. 
    more » « less
  5. Abstract

    We use high‐resolution earthquake locations to characterize the three‐dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on continental strike slip faults of various structural maturity (i.e. various cumulative fault displacement, length, initiation age and slip rate). Aftershocks define a tabular zone of shear deformation surrounding the mainshock rupture plane. Comparing this to geological observations, we conclude that this results from the re‐activation of secondary faults. We observe a rapid fall off of the number of aftershocks at a distance range of 0.06‐0.22 km from the main fault surface of mature faults, and 0.6‐1.0 km from the fault surface of immature faults. The total width of the active shear deformation zone surrounding the main fault plane reaches 1.0‐2.5 km and 6‐9 km for mature and immature faults, respectively. We find that the width of the shear deformation zone decreases as a power law with cumulative fault displacement. Comparing with a dynamic rough fault model, we infer that the narrowing of the shear deformation zone agrees quantitatively with earlier estimates of the smoothing of faults with displacement, both of which are aspects of fault wear. We find that earthquake stress drop decreases with fault displacement and hence with increased smoothness and/or slip rate. This may result from fault healing or the effect of roughness on friction.

     
    more » « less