Abstract The Scotia Sea is the site of one of the largest spring phytoplankton blooms in the Southern Ocean. Past studies suggest that shelf‐iron inputs are responsible for the high productivity in this region, but the physical mechanisms that initiate and sustain the bloom are not well understood. Analysis of profiling float data from 2002 to 2017 shows that the Scotia Sea has an unusually shallow mixed‐layer depth during the transition from winter to spring, allowing the region to support a bloom earlier in the season than elsewhere in the Antarctic Circumpolar Current. We compare these results to the mixed‐layer depth in the 1/6° data‐assimilating Southern Ocean State Estimate and then use the model output to assess the physical balances governing mixed‐layer variability in the region. Results indicate the importance of lateral advection of Weddell Sea surface waters in setting the stratification. A Lagrangian particle release experiment run backward in time suggests that Weddell outflow constitutes 10% of the waters in the upper 200 m of the water column in the bloom region. This dense Weddell water subducts below the surface waters in the Scotia Sea, establishing a sharp subsurface density contrast that cannot be overcome by wintertime convection. Profiling float trajectories are consistent with the formation of Taylor columns over the region's complex bathymetry, which may also contribute to the unique stratification. Furthermore, biogeochemical measurements from 2016 and 2017 bloom events suggest that vertical exchange associated with this Taylor column enhances productivity by delivering nutrients to the euphotic zone.
more »
« less
Modeling the Impact of Ocean Circulation on Chlorophyll Blooms Around South Georgia, Southern Ocean
Abstract The northeast periphery of the Scotia Sea hosts one of the largest chlorophyll‐a blooms of the Southern Ocean. This bloom peaks to the northwest of the island of South Georgia, extending eastward for hundreds of kilometers. Although the Southern Ocean has many islands of similar size, South Georgia is ecologically one of the most significant: It not only sustains one of the Southern Ocean's largest and most diverse ecosystems but also constitutes its single most important region for biological carbon sequestration. While the exceptional nature of South Georgia's blooms has been recognized widely, both the physical processes that contribute to their fertilization and the reasons why these blooms are larger than those of other similar regions (e.g., Kerguelen or Crozet Islands) are poorly understood. We use the results of a high‐resolution ocean model to investigate the physical processes that mediate the entrainment of deep, iron‐rich waters into the surface layers of the South Georgia region. We show that the Southern Antarctic Circumpolar Current Front, the southernmost jet of the Antarctic Circumpolar Current (ACC), pumps iron‐enriched waters from the deep ocean onto the bottom layers of South Georgia's shelf. These waters are upwelled along the northern coast of the island and are then exported into the Georgia Basin, where topographically steered circulation shields them from the dispersive effects of local currents and eddies, thus allowing the bloom development.
more »
« less
- Award ID(s):
- 1830856
- PAR ID:
- 10445379
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 125
- Issue:
- 9
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The spring bloom in the Southern Ocean is the rapid‐growth phase of the seasonal cycle in phytoplankton. Many previous studies have characterized the spring bloom using chlorophyll estimates from satellite ocean color observations. Assumptions regarding the chlorophyll‐to‐carbon ratio within phytoplankton and vertical structure of biogeochemical variables lead to uncertainty in satellite‐based estimates of phytoplankton carbon biomass. Here, we revisit the characterizations of the bloom using optical backscatter from biogeochemical floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling and Southern Ocean and Climate Field Studies with Innovative Tools projects. In particular, by providing a three‐dimensional view of the seasonal cycle, we are able to identify basin‐wide bloom characteristics corresponding to physical features; biomass is low in Ekman downwelling regions north of the Antarctic Circumpolar Current region and high within and south of the Antarctic Circumpolar Current.more » « less
-
Abstract The Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60°S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation – GEBCO Seabed 2030 Project supporting the goal of mapping the world’s oceans by 2030. New datasets initiated a second version of IBCSO (IBCSO v2). This version extends to 50°S (covering approximately 2.4 times the area of seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor and resolves many submarine landforms in more detail. This makes IBCSO v2 the most authoritative seafloor map of the area south of 50°S.more » « less
-
Abstract A high‐resolution ocean model is used to characterize the variability of the shelf circulation and cross‐shelf transport around the South Georgia island (SG). The time‐mean shelf circulation consists of a counterclockwise flow with a net onshelf mass flow in the south and a net offshelf mass flow in the north. In the south, the cross‐shelf exchanges show a two‐layer structure with an offshelf flow below 350 m and onshelf flow above. In the north, the cross‐shelf exchanges show a three‐layer structure with the onshelf flow found only between 350 and 50 m. Correlation analysis shows that winds and the Southern Antarctic Circumpolar Current Front (SACCF) current modulate the variability of the shelf circulation and cross‐shelf transport. Local wind stress is significantly correlated with the coastal currents, mid‐shelf jet, and cross‐shelf transports in the upper layer, while the SACCF modulates the shelf and cross‐shelf transports in the southwestern shelf. Likewise, an Empirical Orthogonal Function analysis indicates that the first mode of shelf circulation variability is highly correlated with the SACCF, while the second mode is explained by the local wind stress and significantly correlated with the Antarctic Oscillation. The El Niño Southern Oscillation does not significantly contribute to the shelf circulation but is significantly correlated with the surface temperature variability. The atmospheric teleconnection drives changes in local heat flux, such that warm El Niño conditions over the equatorial Pacific are associated with a cooling of the SG waters. This superposes local signals onto temperature anomalies advected from upstream in the ACC found in previous studies.more » « less
-
We investigate the role of Southern Ocean topography and wind stress in the deep and abyssal ocean overturning and water mass composition using a suite of idealized global ocean circulation models. Specifically, we address how the presence of a meridional ridge in the vicinity of Drake Passage and the formation of an associated Southern Ocean gyre influence the water mass composition of the abyssal cell. Our experiments are carried out using a numerical representation of the global ocean circulation in an idealized two-basin geometry under varying wind stress and Drake Passage ridge height. In the presence of a low Drake Passage ridge, the overall strength of the meridional overturning circulation is primarily influenced by wind stress, with a topographically induced weakening of the middepth cell and concurrent strengthening of the abyssal cell occurring only after ridge height passes 2500 m. Passive tracer experiments show that a strengthening middepth cell leads to increased abyssal ventilation by North Atlantic water masses, as more North Atlantic Deep Water (NADW) enters the Southern Ocean and then spreads into the Indo-Pacific. We repeat our tracer experiments without restoring in the high-latitude Southern Ocean in order to identify the origin of water masses that circulate through the Southern Ocean before sinking into the abyss as Antarctic Bottom Water. Our results from these “exchange” tracer experiments show that an increasing ridge height in Drake Passage and the concurrent gyre spinup lead to substantially decreased NADW-origin waters in the abyssal ocean, as more surface waters from north of the Antarctic Circumpolar Current (ACC) are transferred into the Antarctic Bottom Water formation region. Significance StatementThe objective of this study is to investigate how topographic features in the Southern Ocean can affect the overall structure of Earth’s large-scale ocean circulation and the distribution of water masses in the abyssal ocean. We focus on the Southern Ocean because the region is of central importance for exchange between the Atlantic and Indo-Pacific Ocean basins and for CO2and heat uptake into the abyssal ocean. Our results indicate that Southern Ocean topography plays a major role in the overall circulation by 1) controlling the direct transfer of abyssal waters from the Atlantic to the Indo-Pacific via its influence on the Atlantic meridional overturning circulation and 2) controlling the coupling between the abyssal ocean and surface waters north of the Antarctic Circumpolar Current via the Southern Ocean gyre.more » « less
An official website of the United States government
