skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multimaterial Multinozzle Adaptive 3D Printing of Soft Materials
Abstract Direct ink writing is a facile method that enables biological, structural, and functional materials to be printed in three dimensions (3D). To date, this extrusion‐based method has primarily been used to soft materials in a layer‐wise manner on planar substrates. However, many emerging applications would benefit from the ability to conformally print materials of varying composition on substrates with arbitrary topography. Here, a high throughput platform based on multimaterial multinozzle adaptive 3D printing (MMA‐3DP) that provides independent control of nozzle height and seamless switching between inks is reported. To demonstrate the MMA‐3DP platform, conformally pattern viscoelastic inks composed of triblock copolymer, gelatin, and photopolymerizable polyacrylate materials onto complex substrates of varying topography, including those with surface defects that mimic skin abrasions or deep gouges. This platform opens new avenues for rapidly patterning soft materials for structural, functional, and biomedical applications.  more » « less
Award ID(s):
1922321
PAR ID:
10445418
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
7
Issue:
8
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Three-dimensional printing (3DP) of functional materials is increasingly important for advanced applications requiring objects with complex or custom geometries or prints with gradients or zones with different properties. A common 3DP technique is direct ink writing (DIW), in which printable inks are comprised of a fluid matrix filled with solid particles, the latter of which can serve a dual purpose of rheology modifiers to enable extrusion and functional fillers for performance-related properties. Although the relationship between filler loading and viscosity has been described for many polymeric systems, a thorough description of the rheological properties of three-dimensional (3D) printable composites is needed to expedite the creation of new materials. In this manuscript, the relationship between filler loading and printability is studied using model paraffin/photopolymer composite inks containing between 0 and 73 vol. % paraffin microbeads. The liquid photopolymer resin is a Newtonian fluid, and incorporating paraffin microbeads increases the ink viscosity and imparts shear-thinning behavior, viscoelasticity, and thixotropy, as established by parallel plate rheometry experiments. Using Einstein and Batchelor's work on colloidal suspension rheology, models were developed to describe the thixotropic behavior of inks, having good agreement with experimental results. Each of these properties contributes to the printability of highly filled ([Formula: see text]43 vol. % paraffin) paraffin/photopolymer composite inks. Through this work, the ability to quantify the ideal rheological properties of a DIW ink and to selectively control and predict its rheological performance will facilitate the development of 3D printed materials with tunable functionalities, thus, advancing 3DP technology beyond current capabilities. 
    more » « less
  2. ABSTRACT Soft materials with unique nanostructures such as lamellar, hexagonal, and cubic morphologies can replicate complex structures that have potential in various fields, including biomedical and industrial applications. However, a key challenge in advancing the broader applications of 3D printing for these nanostructured soft materials is insufficient mechanical properties that hinder their printability and compromise structural stability in the final product. In this study, the suitability of a fatty acid‐based lamellar gel is evaluated for direct extrusion‐based 3D printing. The lamellar gel with varying water content is integrated with a photocurable hydrogel to preserve the shape and stability of the final prints. Complex 2D and 3D design patterns are used to assess extrusion behavior, structural stability, and print precision under varying pressures. Small‐angle X‐ray Scattering (SAXS) measurements reveal the formation of lamellar nanostructures and confirm their retention after photocuring in various gels. Rheological analysis confirms that these gels exhibit key properties suitable for extrusion‐based 3D printing, such as shear‐thinning behavior. Additionally, tensile testing is conducted to evaluate the mechanical properties across cured print samples. This study underscores the potential of nanostructured gels as a robust and versatile platform, facilitating the development of materials engineered for various applications. 
    more » « less
  3. Abstract 3D printing (3DP) technologies have transformed the processing of advanced ceramics for small‐scale and custom designs during the past three decades. Simple and complex parts are designed and manufactured using 3DP technologies for structural, piezoelectric, and biomedical applications. Manufacturing simple or complex geometries or one‐of‐a‐kind components without part‐specific tooling saves significant time and creates new applications for advanced ceramic materials. Although development and innovations in 3DP of ceramics are far behind compared with metals or polymers, with the availability of different commercial machines in recent years for 3DP of ceramics, exponential growth is expected in this field in the coming decade. This article details various 3DP technologies for advanced ceramic materials, their advantages and challenges for manufacturing parts for various applications, and perspectives on future directions. We envision this work will be helpful to advanced ceramic researchers in industry and academia who are using different 3DP processes in the coming days. 
    more » « less
  4. Abstract Versatile printing of polymers, metals, and composites always calls for simple, economic approaches. Here we present an approach to three-dimensional (3D) printing of polymeric, metallic, and composite materials at room conditions, based on the polymeric vapor-induced phase separation (VIPS) process. During VIPS 3D printing (VIPS-3DP), a dissolved polymer-based ink is deposited in an environment where nebulized non-solvent is present, inducing the low-volatility solvent to be extracted from the filament in a controllable manner due to its higher chemical affinity with the non-solvent used. The polymeric phase is hardened in situ as a result of the induced phase separation process. The low volatility of the solvent enables its reclamation after the printing process, significantly reducing its environmental footprint. We first demonstrate the use of VIPS-3DP for polymer printing, showcasing its potential in printing intricate structures. We further extend VIPS-3DP to the deposition of polymer-based metallic inks or composite powder-laden polymeric inks, which become metallic parts or composites after a thermal cycle is applied. Furthermore, spatially tunable porous structures and functionally graded parts are printed by using the printing path to set the inter-filament porosity as well as an inorganic space-holder as an intra-filament porogen. 
    more » « less
  5. null (Ed.)
    Emulating the unique combination of structural, compositional, and functional gradation in natural materials is exceptionally challenging. Many natural structures have proved too complex or expensive to imitate using traditional processing techniques despite recent advances. Recent innovations within the field of additive manufacturing (AM) or 3D Printing (3DP) have shown the ability to create structures that have variations in material composition, structure, and performance, providing a new design-for-manufacturing platform for the imitation of natural materials. AM or 3DP techniques are capable of manufacturing structures that have significantly improved properties and functionality over what could be traditionally-produced, giving manufacturers an edge in their ability to realize components for highly-specialized applications in different industries. To this end, the present work reviews fundamental advances in the use of naturally-inspired design enabled through 3DP / AM, how these techniques can be further exploited to reach new application areas and the challenges that lie ahead for widespread implementation. An example of how these techniques can be applied towards a total hip arthroplasty application is provided to spur further innovation in this area. 
    more » « less