skip to main content


Title: Predicting the Effects of Waning Vaccine Immunity Against COVID‐19 through High‐Resolution Agent‐Based Modeling
Abstract

The potential waning of the vaccination immunity to COVID‐19 could pose threats to public health, as it is tenable that the timing of such waning would synchronize with the near‐complete restoration of normalcy. Should also testing be relaxed, a resurgent COVID‐19 wave in winter 2021/2022 might be witnessed. In response to this risk, an additional vaccine dose, the booster shot, is being administered worldwide. A projected study with an outlook of 6 months explores the interplay between the rate at which boosters are distributed and the extent to which testing practices are implemented, using a highly granular agent‐based model tuned on a medium‐sized US town. Theoretical projections indicate that the administration of boosters at the rate at which the vaccine is currently administered could yield a severe resurgence of the pandemic. Projections suggest that the peak levels of mid‐spring 2021 in the vaccination rate may prevent such a scenario to occur, although exact agreement between observations and projections should not be expected due to the continuously evolving nature of the pandemic. This study highlights the importance of testing, especially to detect asymptomatic individuals in the near future, as the release of the booster reaches full speed.

 
more » « less
Award ID(s):
2027988
NSF-PAR ID:
10445435
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Theory and Simulations
Volume:
5
Issue:
6
ISSN:
2513-0390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Low, Nicola (Ed.)
    Background While booster vaccinations clearly reduce the risk of severe Coronavirus Disease 2019 (COVID-19) and death, the impact of boosters on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections has not been fully characterized: Doing so requires understanding their impact on asymptomatic and mildly symptomatic infections that often go unreported but nevertheless play an important role in spreading SARS-CoV-2. We sought to estimate the impact of COVID-19 booster doses on SARS-CoV-2 infections in a vaccinated population of young adults during an Omicron BA.1-predominant period. Methods and findings We implemented a cohort study of young adults in a college environment (Cornell University’s Ithaca campus) from a period when Omicron BA.1 was the predominant SARS-CoV-2 variant on campus (December 5 to December 31, 2021). Participants included 15,800 university students who completed initial vaccination series with vaccines approved by the World Health Organization for emergency use, were enrolled in mandatory at-least-weekly surveillance polymerase chain reaction (PCR) testing, and had no positive SARS-CoV-2 PCR test within 90 days before the start of the study period. Robust multivariable Poisson regression with the main outcome of a positive SARS-CoV-2 PCR test was performed to compare those who completed their initial vaccination series and a booster dose to those without a booster dose. A total of 1,926 unique SARS-CoV-2 infections were identified in the study population. Controlling for sex, student group membership, date of completion of initial vaccination series, initial vaccine type, and temporal effect during the study period, our analysis estimates that receiving a booster dose further reduces the rate of having a PCR-detected SARS-CoV-2 infection relative to an initial vaccination series by 56% (95% confidence interval [42%, 67%], P < 0.001). While most individuals had recent booster administration before or during the study period (a limitation of our study), this result is robust to the assumed delay over which a booster dose becomes effective (varied from 1 day to 14 days). The mandatory active surveillance approach used in this study, under which 86% of the person-days in the study occurred, reduces the likelihood of outcome misclassification. Key limitations of our methodology are that we did not have an a priori protocol or statistical analysis plan because the analysis was initially done for institutional research purposes, and some analysis choices were made after observing the data. Conclusions We observed that boosters are effective, relative to completion of initial vaccination series, in further reducing the rate of SARS-CoV-2 infections in a college student population during a period when Omicron BA.1 was predominant; booster vaccinations for this age group may play an important role in reducing incidence of COVID-19. 
    more » « less
  2. Abstract

    One of the most consequential unknowns of the COVID‐19 pandemic is the frequency at which vaccine boosting provides sufficient protection from infection. We quantified the statistical likelihood of breakthrough infections over time following different boosting schedules with messenger RNA (mRNA)‐1273 (Moderna) and BNT162b2 (Pfizer‐BioNTech). We integrated anti‐Spike IgG antibody optical densities with profiles of the waning of antibodies and corresponding probabilities of infection associated with coronavirus endemic transmission. Projecting antibody levels over time given boosting every 6 months, 1, 1.5, 2, or 3 years yielded respective probabilities of fending off infection over a 6‐year span of >93%, 75%, 55%, 40%, and 24% (mRNA‐1273) and >89%, 69%, 49%, 36%, and 23% (BNT162b2). Delaying the administration of updated boosters has bleak repercussions. It increases the probability of individual infection by SARS‐CoV‐2, and correspondingly, ongoing disease spread, prevalence, morbidity, hospitalization, and mortality. Instituting regular, population‐wide booster vaccination updated to predominant variants has the potential to substantially forestall—and with global, widespread uptake, eliminate—COVID‐19.

     
    more » « less
  3. COVID-19 seroprevalence changes over time, with infection, vaccination, and waning immunity. Seroprevalence estimates are needed to determine when increased COVID-19 vaccination coverage is needed, and when booster doses should be considered, to reduce the spread and disease severity of COVID-19 infection. We use an age-structured model including infection, vaccination and waning immunity to estimate the distribution of immunity to COVID-19 in the Canadian population. This is the first mathematical model to do so. We estimate that 60–80% of the Canadian population has some immunity to COVID-19 by late Summer 2021, depending on specific characteristics of the vaccine and the waning rate of immunity. Models results indicate that increased vaccination uptake in age groups 12–29, and booster doses in age group 50+ are needed to reduce the severity COVID-19 Fall 2021 resurgence. 
    more » « less
  4. One of the most consequential unknowns of the COVID-19 pandemic is the frequency at which vaccine boosting provides sufficient protection from infection. We quantified the statistical likelihood of breakthrough infections over time following different boosting schedules with messenger RNA (mRNA)-1273 (Moderna) and BNT162b2 (Pfizer-BioNTech). We integrated anti-Spike IgG antibody optical densities with profiles of the waning of antibodies and corresponding probabilities of infection associated with coronavirus endemic transmission. Projecting antibody levels over time given boosting every 6 months, 1, 1.5, 2, or 3 years yielded respective probabilities of fending off infection over a 6-year span of >93%, 75%, 55%, 40%, and 24% (mRNA-1273) and >89%, 69%, 49%, 36%, and 23% (BNT162b2). Delaying the administration of updated boosters has bleak repercussions. It increases the probability of individual infection by SARS-CoV-2, and correspondingly, ongoing disease spread, prevalence, morbidity, hospitalization, and mortality. Instituting regular, population-wide booster vaccination updated to predominant variants has the potential to substantially forestall-and with global, widespread uptake, eliminate-COVID-19. 
    more » « less
  5. Abstract Background

    COVID-19 disproportionately affects those with preexisting conditions, but little research has determined whether those with chronic diseases view the pandemic itself differently - and whether there are differences between chronic diseases. We theorized that while individuals with respiratory disease or autoimmune disorders would perceive greater threat from COVID-19 and be more supportive of non-pharmaceutical interventions (NPIs), those with autoimmune disorders would be less likely to support vaccination-based interventions.

    Methods

    We conducted a two-wave online survey conducted in February and November 2021 asking respondents their beliefs about COVID-19 risk perception, adoption and support of interventions, willingness to be vaccinated against COVID-19, and reasons for vaccination. Regression analysis was conducted to assess the relationship of respondents reporting a chronic disease and COVID-19 behaviors and attitudes, compared to healthy respondents adjusting for demographic and political factors.

    Results

    In the initial survey, individuals reporting a chronic disease had both stronger feelings of risk from COVID-19 as well as preferences for NPIs than healthy controls. The only NPI that was still practiced significantly more compared to healthy controls in the resample was limiting trips outside of the home. Support for community-level NPIs was higher among individuals reporting a chronic disease than healthy controls and remained high among those with respiratory diseases in sample 2. Vaccine acceptance produced more divergent results: those reporting chronic respiratory diseases were 6% more willing to be vaccinated than healthy controls, while we found no significant difference between individuals with autoimmune diseases and healthy controls. Respondents with chronic respiratory disease and those with autoimmune diseases were more likely to want to be vaccinated to protect themselves from COVID-19, and those with an autoimmune disease were more likely to report fear of a bad vaccine reaction as the reason for vaccine hesitancy. In the resample, neither those with respiratory diseases nor autoimmune diseases reported being more willing to receive a booster vaccine than healthy controls.

    Conclusions

    It is not enough to recognize the importance of health in determining attitudes: nuanced differences between conditions must also be recognized.

     
    more » « less