skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving decision support systems with machine learning: Identifying barriers to adoption
Abstract Precision agriculture (PA) has been defined as a “management strategy that gathers, processes and analyzes temporal, spatial and individual data and combines it with other information to support management decisions according to estimated variability for improved resource use efficiency, productivity, quality, profitability and sustainability of agricultural production.” This definition suggests that because PA should simultaneously increase food production and reduce the environmental footprint, the barriers to adoption of PA should be explored. These barriers include (1) the financial constraints associated with adopting decision support system (DSS); (2) the hesitancy of farmers to change from their trusted advisor to a computer program that often behaves as a black box; (3) questions about data ownership and privacy; and (4) the lack of a trained workforce to provide the necessary training to implement DSSs on individual farms. This paper also discusses the lessons learned from successful and unsuccessful efforts to implement DSSs, the importance of communication with end users during DSS development, and potential career opportunities that DSSs are creating in PA.  more » « less
Award ID(s):
2202706
PAR ID:
10445445
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Agronomy Journal
Volume:
116
Issue:
3
ISSN:
0002-1962
Format(s):
Medium: X Size: p. 1229-1236
Size(s):
p. 1229-1236
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The use of intelligent decision support systems (DSS) in precision farming provides an opportunity to improve agricultural recommendations and reduce the impacts of agriculture on the environment. Despite the benefits offered by DDS, many farmers remain skeptical of using these hardware and software tools, and their adoption rates have remained low. A survey of 312 South Dakota farmers examined the barriers and opportunities for their engagement with DSS. Exploratory factor analysis was used to analyze 13 Likert scale survey items that probed farmers’ concerns about DSS. Factor loadings indicated that farmers’ concerns are related to high cost, insufficient knowledge, lack of confidence, and cyber security and privacy. A latent profile analysis (LPA) method was used to classify respondents into profiles or groups based on their dimensions of concerns (cost, knowledge, confidence, and security). Results of the LPA revealed that the sample of farmers could be grouped into four distinct profiles that ranged from low to high confidence in the use of DSS for agronomic decision‐making. Giving attention to farmer comfort/concern profiles allows for a more inclusive and better targeted engagement with farmers and potentially increase the adoption of PA. This knowledge can be vital for technology developers, policymakers, and extension services who are keen to promote PA usage among large‐, medium‐, and small‐scale farmers in the United States. 
    more » « less
  2. Urban residents are often unevenly vulnerable to extreme weather and climate events due to socio-economic factors and insufficient greenspace. This can be amplified if citizens are not meaningfully consulted in the planning and design decisions, with changes to greenspace having detrimental impacts on local communities, e.g., through green gentrification. These deficiencies can be addressed through inclusive landscape-level collaborative planning and design processes, where residents are fully engaged in the co-creation of urban greenspaces. A promising way to support co-creation efforts is gamifying technology-based interactive decision support systems (DSSs). Gamification, the incorporation of video game elements or play into non-game contexts, has previously been used for DSSs in urban planning and to inform the public about the impacts of climate change. However, this has yet to combine informational goals with design-play functionality in the redesign of urban greenspaces. We conducted a review of state-of-the-art video game DSSs used for urban planning engagement and climate education. Here, we propose that gamified DSSs should incorporate educational elements about climate change alongside the interactive and engaging elements of urban planning games, particularly for real-world scenarios. This cross-disciplinary approach can facilitate improved community engagement in greenspace planning, informing design and management strategies to ensure multiple benefits for people and the environment in climate-vulnerable cities. 
    more » « less
  3. There is strong agreement across the sciences that replicable workflows are needed for computational modeling. Open and replicable workflows not only strengthen public confidence in the sciences, but also result in more efficient community science. However, the massive size and complexity of geoscience simulation outputs, as well as the large cost to produce and preserve these outputs, present problems related to data storage, preservation, duplication, and replication. The simulation workflows themselves present additional challenges related to usability, understandability, documentation, and citation. These challenges make it difficult for researchers to meet the bewildering variety of data management requirements and recommendations across research funders and scientific journals. This paper introduces initial outcomes and emerging themes from the EarthCube Research Coordination Network project titled “What About Model Data? - Best Practices for Preservation and Replicability,” which is working to develop tools to assist researchers in determining what elements of geoscience modeling research should be preserved and shared to meet evolving community open science expectations. Specifically, the paper offers approaches to address the following key questions: • How should preservation of model software and outputs differ for projects that are oriented toward knowledge production vs. projects oriented toward data production? • What components of dynamical geoscience modeling research should be preserved and shared? • What curation support is needed to enable sharing and preservation for geoscience simulation models and their output? • What cultural barriers impede geoscience modelers from making progress on these topics? 
    more » « less
  4. Manichanh, Chaysavanh (Ed.)
    ABSTRACT Inflammatory bowel diseases (IBDs) are devastating conditions of the gastrointestinal tract with limited treatments, and dietary intervention may be effective and affordable for managing symptoms. Glucosinolate compounds are highly concentrated in broccoli sprouts, especially glucoraphanin (GLR), and can be metabolized by certain mammalian gut bacteria into anti-inflammatory isothiocyanates, such as sulforaphane. Gut microbiota exhibit biogeographic patterns, but it is unknown if colitis alters these or whether the location of glucoraphanin-metabolizing bacteria affects anti-inflammatory benefits. We fed specific pathogen-free C57BL/6 mice either a control diet or a 10% steamed broccoli sprout diet and gave a three-cycle regimen of 2.5% dextran sodium sulfate (DSS) in drinking water over a 34-day experiment to simulate chronic, relapsing ulcerative colitis (UC). We monitored body weight, fecal characteristics, lipocalin, serum cytokines, and bacterial communities from the luminal- and mucosal-associated populations in the jejunum, cecum, and colon. Mice fed the broccoli sprout diet with DSS treatment performed better than mice fed the control diet with DSS, and had significantly more weight gain, lower Disease Activity Index scores, lower plasma lipocalin and proinflammatory cytokines, and higher bacterial richness in all gut locations. Bacterial communities were assorted by gut location but were more homogenous across locations in the control diet + DSS mice. Importantly, our results showed that broccoli sprout feeding abrogated the effects of DSS on gut microbiota, as bacterial richness and biogeography were similar between mice receiving broccoli sprouts with and without DSS. Collectively, these results support the protective effect of steamed broccoli sprouts against dysbiosis and colitis induced by DSS. IMPORTANCEEvaluating bacterial communities across different locations in the gut provides a greater insight than fecal samples alone and provides an additional metric by which to evaluate beneficial host-microbe interactions. Here, we show that 10% steamed broccoli sprouts in the diet protects mice from the negative effects of dextran sodium sulfate-induced colitis, that colitis erases biogeographic patterns of bacterial communities in the gut, and that the cecum is not likely to be a significant contributor to colonic bacteria of interest in the DSS mouse model of ulcerative colitis. Mice fed the broccoli sprout diet during colitis performed better than mice fed the control diet while receiving DSS. The identification of accessible dietary components and concentrations that help maintain and correct the gut microbiome may provide universal and equitable approaches to IBD prevention and recovery, and broccoli sprouts represent a promising strategy. 
    more » « less
  5. Globally, cities and their infrastructures, people, and ecology systems are experiencing unprecedented changes due to environmental change and anthropogenic pressures. To create the most sustainable approaches for mitigating and adapting to environmental changes, urban designs require a radical rethink that accounts for the needs of local citizens and stakeholders. Decision support systems (DSS) can be utilized to engage with members of the public to elicit their opinions on proposed designs. To better engage citizens, DSSs have started to include the use of virtual reality and augmented reality to demonstrate designs, however, these systems are often only applied to smaller stakeholder engagement events. Here, we created a theory-informed augmented reality application for collaborative crowdsourcing of urban designs. The designed system allows users to manipulate a two-dimensional map with targets representing different objects (e. g., trees, lakes, infrastructure). The changes made to the 2D map are then visualized through a mobile application that displays a 3D AR visualization of the changes the user makes in real time. The resulting application can be used to engage a diversity of participants in a range of urban and environmental planning contexts. 
    more » « less