skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Impulsive Tsunami and Large Runup Along the Sanriku Coast of Japan Produced by an Inelastic Wedge Deformation Model
Abstract

Dynamic wedge failure produces short‐wavelength seafloor uplift efficiently with diminishing shallow slip on the plate interface, generating impulsive tsunami. For ria coasts with prevalent small‐wavelength bathymetric and geomorphologic features, such as the Sanriku coast of Japan, impulsive tsunami can be amplified to produce large runup. We model tsunami propagation and runup of the 1896 Sanriku tsunami by using the seafloor deformation from dynamic rupture models of Ma and Nie (2019) for aMW8 earthquake with inelastic wedge deformation. The nonlinear Boussinesq equation is solved by a nested‐grid finite‐difference method with high‐resolution bathymetry data. We show that an inelastic deformation model with extensive wedge failure produces impulsive tsunami similar to those observed offshore the Sanriku coast in the 2011 Tohoku earthquake and generates large runup remarkably consistent with the 1896 Sanriku tsunami. As an alternative to previous models based solely on fault slip, we suggest that the impulsive tsunami and large runup along the Sanriku coast observed in the 2011 Tohoku earthquake can be explained by inelastic wedge deformation north of 38.5°N.

 
more » « less
PAR ID:
10445452
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
8
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Inelastic wedge deformation likely plays an important role in the generation of tsunami and ocean acoustic waves in accretionary subduction margins. In an elastic dislocation model, whether or not the fault breaks the trench has a significant effect on seafloor deformation and resulting tsunami. However, this boundary condition is less important when significant inelastic deformation in the overriding wedge occurs, because large seafloor uplift can occur with little or no slip at the trench. Here we incorporate wedge plasticity in fully coupled dynamic rupture and tsunami simulations for a buried fault in the Cascadia subduction zone with realistic fault geometry, bathymetry, and velocity structure. A linearized Eulerian approach is verified and used to simulate gravity waves in the ocean. Our coupled models show that the inelastic deformation of wedge sediments can significantly contribute to seafloor uplift, producing tsunami heights at least twice as large as in purely elastic simulations, whilst generating weaker ocean acoustic and seismic waves. Inelastic wedge deformation is therefore an important mechanism to consider in tsunami hazard assessment in the Cascadia subduction zone. These results have important implications for tsunami generation and early warning in accretionary and other sediment‐filled margins worldwide.

     
    more » « less
  2. Abstract

    The Kalapana, Hawaii,MW7.7 earthquake on November 29, 1975 generated a local tsunami with at least 14.3 m runup on the southeast shore of Hawaii Island adjacent to Kilauea Volcano. This was the largest locally generated tsunami since the great 1868 Ka'u earthquake located along‐shore to the southwest. Well‐recorded tide gauge and runup observations provide a key benchmark for studies of statewide tsunami hazards from actively deforming southeast Hawaii Island. However, the source process of the earthquake remains controversial, with coastal landsliding and/or offshore normal or thrust faulting mechanisms having been proposed to reconcile features of seismic, geodetic, and tsunami observations. We utilize these diverse observations for the 1975 Kalapana earthquake to deduce a compound faulting model that accounts for the overall tsunamigenesis, involving both landslide block faulting along the shore and slip on the island basal décollement. Thrust slip of 4.5–8.0 m on the offshore décollement produces moderate near‐field runup but controls the far‐field tsunami. The slip distribution implies that residual strain energy was available for the May 4, 2018MW7.2 thrust earthquake during the Kilauea‐East Rift Zone eruption. Local faulting below land contributes to geodetic and seismic observations, but is non‐tsunamigenic and not considered. Slip of 4–10 m on landslide‐like faults, which extend from the Hilina Fault Zone scarp to offshore shallowly dipping faults reaching near the seafloor, triples the near‐field tsunami runup. This compound model clarifies the roles of the faulting components in assessing tsunami hazards for the Hawaiian Islands.

     
    more » « less
  3. Abstract

    The large magnitude of the 2011Mw9.0 Tohoku‐Oki earthquake, which occurred off the east coast of Japan, was not expected or predicted by any previous studies. One surprising observation was the sudden change in stress state; local earthquakes confirmed a compressional stress state before the main shock, whereas an extensional stress state was evident after the main shock. Using discrete element method modeling, this project attempts to reproduce the stress change after the main shock, and explores the conditions that can cause stress switching both onshore and offshore Tohoku. Our simulations demonstrate that rapid fault weakening can produce stress change and predominant normal‐fault earthquake mechanisms in the upper plate of Tohoku‐Oki. Several specific conditions seem to favor such stress switching; the megathrust fault must have been frictionally strong before the main shock, and comparable values of internal (μinternal) and basal friction (μbasal) are necessary to cause the formation of widespread normal faults within the wedge. Furthermore, dynamic extension during elastic unloading appears to play an important role in accommodating stress changes and wedge deformation in the Tohoku area; these cannot be explained solely based on Critical Coulomb Wedge models, but instead require dynamic unloading processes.

     
    more » « less
  4. Abstract

    Extreme slip at shallow depths on subduction zone faults is a primary contributor to tsunami generation by earthquakes. Improving earthquake and tsunami risk assessment requires understanding the material and structural conditions that favor earthquake propagation to the trench. We use new biomarker thermal maturity indicators to identify seismic faults in drill core recovered from the Japan Trench subduction zone, which hosted 50 m of shallow slip during theMw9.1 2011 Tohoku-Oki earthquake. Our results show that multiple faults have hosted earthquakes with displacement ≥ 10 m, and each could have hosted many great earthquakes, illustrating an extensive history of great earthquake seismicity that caused large shallow slip. We find that lithologic contrasts in frictional properties do not necessarily determine the likelihood of large shallow slip or seismic hazard.

     
    more » « less
  5. Abstract Despite a lack of modern large earthquakes on shallowly dipping normal faults, Holocene M w  > 7 low-angle normal fault (LANF; dip<30°) ruptures are preserved paleoseismically and inferred from historical earthquake and tsunami accounts. Even in well-recorded megathrust earthquakes, the effects of non-linear off-fault plasticity and dynamically reactivated splay faults on shallow deformation and surface displacements, and thus hazard, remain elusive. We develop data-constrained 3D dynamic rupture models of the active Mai’iu LANF that highlight how multiple dynamic shallow deformation mechanisms compete during large LANF earthquakes. We show that shallowly-dipping synthetic splays host more coseismic slip and limit shallow LANF rupture more than steeper antithetic splays. Inelastic hanging-wall yielding localizes into subplanar shear bands indicative of newly initiated splay faults, most prominently above LANFs with thick sedimentary basins. Dynamic splay faulting and sediment failure limit shallow LANF rupture, modulating coseismic subsidence patterns, near-shore slip velocities, and the seismic and tsunami hazards posed by LANF earthquakes. 
    more » « less