skip to main content


Title: Impacts of the Scale of Representation of Heterogeneity on Simulated Salinity and Saltwater Circulation in Coastal Aquifers
Abstract

Numerical models of variable‐density groundwater flow and salt transport are a primary tool for predicting salinity distributions in coastal aquifers and estimating submarine groundwater discharge (SGD). Models are particularly useful to estimate the saline component of SGD, which can occur far offshore and is difficult to measure directly. Depending on the system and application, the level of geologic detail represented can range from homogeneous or layered to fully heterogeneous hydraulic conductivity fields. These features strongly affect model results, limiting understanding of subsurface salinity distributions and associated density‐driven saltwater circulation along coasts worldwide. In this study, the impact of the scale of representation of heterogeneity on salinity distributions and SGD was investigated using numerical simulations. Upscaling hydraulic conductivity can significantly modify salinity distributions and flow paths, resulting in unpredictable variations in simulated SGD, though the values for homogeneous fields with equivalent hydraulic conductivity show consistent trends. Simulated density distributions control both the rate and direction of subsurface saltwater circulation. The length of the mixing zone perimeter, a measure of salinity distribution complexity, is shown to correlate with both the rate of subsurface saltwater circulation and the amount of groundwater circulating in the reverse direction from homogeneous cases. Overall, the results demonstrate a strong dependence of salinity distributions and saltwater circulation on the scale and distribution of geologic heterogeneity represented in numerical models. This suggests that numerical models with simplified geologic structure may substantially underestimate saltwater circulation, and attempts to calibrate them using salinity distributions or SGD measurements may be problematic.

 
more » « less
NSF-PAR ID:
10445455
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
1
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A density‐dependent, variably saturated groundwater flow and solute transport model was used to investigate the influence of swash motions on subsurface flow and moisture dynamics in beach aquifers with heterogeneous distributions of hydraulic conductivity (K) and capillarity. The numerical simulations were performed within a Monte Carlo framework using field measurements conducted in the swash zone of a sandy beach. Our results show that heterogeneous capillarity causes spatially variable capillary rise above the groundwater table. In response to swash motions, heterogeneity creates capillary barriers that result in pockets of elevated moisture content beneath the swash zone. These moisture hotspots persist within the unsaturated zone even at ebb tide when the swash motions recede seaward. Heterogeneous capillarity also results in highly tortuous preferential flow paths and alters the flow rates from the sand surface to the water table. HeterogeneousKgreatly enhances the seawater infiltration into the swash zone and modulates its spatial distribution along the beach surface. Due to heterogeneousKand capillarity, complex mixing patterns emerge. Both strain‐dominated and vorticity‐dominated flow regions develop and dissipate as tides and waves move across the beach surface. Complex mixing patterns of seawater percolating from the swash zone surface to the water table, with localized areas of high and low mixing intensities, are further demonstrated by analysis of dilution index. Our findings reveal the influence of geologic heterogeneity on swash zone moisture and flow dynamics, which may have important implications for sediment transport and chemical processing in beach aquifers.

     
    more » « less
  2. Abstract

    Knowledge of coastal groundwater flow is critical for managing coastal groundwater resources and quantifying submarine groundwater discharge (SGD), but this flow occurs over multiple scales that can be difficult to study in an integrated way. We designed a field and modeling study to investigate groundwater flow and the distribution of salinity during sea level rise in a domain that included beaches, salt marshes and the first major confined aquifer, which reached 10–15 km offshore. Numerical models were based on the flat‐lying, passive margin coastline of North Inlet, SC, and were constrained by field studies including subsurface resistivity surveys and hydraulic head observations. Simulations that included tidal fluctuations showed that the salt marsh generated more than three times as much SGD as the beach and inner shelf, per unit length of coastline. Groundwater exchange between scales was small, suggesting that physical fluxes of groundwater can be considered independently at different scales. However, salinization of the first major confined aquifer occurred by downward transport from overlying aquifers rather than intrusion from the seaward end, suggesting that studies of aquifer salinization should consider multiscale flow. During simulated sea level rise, fresh‐to‐brackish groundwater persisted in the first confined aquifer as far as the seaward end of the overlying confining unit, 10–20 km offshore. Total fluxes of SGD decreased significantly with future sea level rise, dominated by declining SGD in the salt marsh, and portending a marked decline in the flux of nutrients and carbon to estuaries and the coastal ocean.

     
    more » « less
  3. Abstract

    Nitrous oxide (N2O) is a potent ozone‐depleting greenhouse gas produced by incomplete denitrification. Recent works on riverine N2O emissions focus mainly on contributions from in‐channel, benthic, and fluvial hyporheic environments under assumptions of steady‐state conditions and homogeneous sediment hydraulic conductivity (K). However, riparian floodplains are also a potentially important N2O source characterized by complex sediment heterogeneity and dynamic surface and groundwater interactions. We use numerical flow and reactive transport models to investigate the influence of complex sedimentary architecture and high‐flow events (e.g., storms) on N2O production. We interpret the correlation between flow and solute fields with the flow topological Okubo‐Weiss metric (OW) and the scalar dissipation rate weighted by soil organic matter (OM) fraction and soil saturation. We model a heterogeneous riparian floodplain based on field observations from the Theis Environmental Monitoring and Modeling Site, Ohio, USA. N2O production is greatest within intermediate‐Ksediments (e.g., sands) where denitrification rates are highest, and emissions increase by more than an order of magnitude during storms. Sensitivity analysis reveals that the denitrification rate is most influential for N2O flux, accounting for nearly 46% of the variance in production rates. Denitrification rates adapt to spatial changes in the flow topology (measured by OW) related to sediment heterogeneity and are strongly influenced by subsurface mixing dynamics. Mixing is greatest in shear strain‐dominated regions, while vorticity promotes OM dissolution and prolongs residence times. Accurate lithologic representation is imperative for characterizing subsurface N2O production dynamics, especially given growing concern regarding climate change driven hydrologic changes within watersheds worldwide.

     
    more » « less
  4. Abstract

    Preferential flow can result in rapid contamination of groundwater resources. This is particularly true in aquifers with connected, high permeability geologic structures and in coastal systems where the oceanic source of contamination is ubiquitous. We consider saltwater intrusion due to pumping in volcanic aquifers with lava tubes represented as connected high‐K structures and compare salinization responses to those of heterogeneous aquifers with different structure and equivalent homogeneous systems. Three‐dimensional simulations of variable‐density groundwater flow and salt transport show that conduits formed by lava flows create preferential groundwater flow in volcanic aquifers. These conduits allow fresh groundwater to extend further offshore than in other systems. However, onshore pumping causes saltwater to migrate landward quickly through the conduits relative to the other models, resulting in more severe saltwater intrusion, particularly at shallow depths. The geometry of geologic heterogeneity in volcanic aquifers leads to increased risk of salinization of fresh groundwater as well as substantial uncertainty due to significant spatial variation in saltwater intrusion. The findings illustrate the importance of considering geologic heterogeneity in assessing the vulnerability of coastal freshwater resources in volcanic and other aquifers with connected high‐permeability geologic structures.

     
    more » « less
  5. Abstract

    Despite the prevalence of density‐dependent flow systems in the brine‐rich aquifers of arid climates and coastal aquifers, the impact of realistic geologic conditions on interface geometry and density‐dependent time‐sensitive dynamics remains poorly constrained. Salar de Atacama provides an analog for exploring interface dynamics in arid regions. A site‐specific two‐dimensional hydrostratigraphic interpretation is used to examine the dynamics of the brine‐to‐freshwater interface. With the same simulation framework and core data, a separate parametric series of hydraulic conductivity distributions with varying horizontal continuity provides a mechanistic explanation for observed dynamics. Comparing modeled interfaces and their sensitivity to perturbations in recharge in each realization yields insight into interface dynamics coupled with horizontal continuity in subsurface heterogeneity. Recharge fluctuation is introduced to each distribution following the interface reaching a dynamic steady state. Metrics for results evaluation include interface slope geometry, interface width, migration length, and response rate. Analyses suggest that the average slope of the modeled interface shallows by 0.01 and 0.05 m ⋅ m−1for an increase in continuity of highly permeable pathways by a factor of two and three, respectively. Increasing continuity also increases the overall response times and the variability in response. Results indicate that accurate representations of transient dynamics in modeling density‐dependent brine‐to‐freshwater interface dynamics requires the consideration of heterogeneity, as saline intrusion in the highest continuity group extends over twice as far on average and the modeled interface takes over 43% more time on average to reach a new dynamic steady state when compared to their homogeneous counterparts.

     
    more » « less