skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dewlap colour variation in Anolis sagrei is maintained among habitats within islands of the West Indies
Abstract Animal signals evolve in an ecological context. Locally adapting animal sexual signals can be especially important for initiating or reinforcing reproductive isolation during the early stages of speciation. Previous studies have demonstrated that dewlap colour inAnolislizards can be highly variable between populations in relation to both biotic and abiotic adaptive drivers at relatively large geographical scales. Here, we investigated differentiation of dewlap colouration among habitat types at a small spatial scale, within multiple islands of the West Indies, to test the hypothesis that similar local adaptive processes occur over smaller spatial scales. We explored variation in dewlap colouration in the most widespread species of anole,Anolis sagrei, across three characteristic habitats spanning the Bahamas and the Cayman Islands, namely beach scrub, primary coppice forest and mangrove forest. Using reflectance spectrometry paired with supervised machine learning, we found significant differences in spectral properties of the dewlap between habitats within small islands, sometimes over very short distances. Passive divergence in dewlap phenotype associated with isolation‐by‐distance did not seem to explain our results. On the other hand, these habitat‐specific dewlap differences varied in magnitude and direction across islands, and thus, our primary test for adaptation—parallel responses across islands—was not supported. We suggest that neutral processes or selection could be involved in several ways, including sexual selection. Our results shed new light on the scale at which signal colour polymorphism can be maintained in the presence of gene flow, and the relative role of local adaptation and other processes in driving these patterns of dewlap colour variation across islands.  more » « less
Award ID(s):
1927194
PAR ID:
10445476
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Evolutionary Biology
Volume:
35
Issue:
5
ISSN:
1010-061X
Format(s):
Medium: X Size: p. 680-692
Size(s):
p. 680-692
Sponsoring Org:
National Science Foundation
More Like this
  1. TBD (Ed.)
    Animal colouration is fundamentally important for social communication within conspecifics to advertising threat to competitors or fitness to possible mates. Social status and animal colouration are covarying traits that are plastic in response to dynamic environments. In the African cichlid,Astatotilapia burtoni, body colouration and behaviour have been extensively reported to vary with social rank. However, the nature of the interaction between these two traits is poorly understood. We hypothesise that pigmentation patterns could be linked to the behavioural repertoires underlying social status and can be resolved to regions on the cichlid body plan. To test this hypothesis, we generated Territorial (T) and Non-territorial (NT) males and employed computer vision tools to quantify and visualise patterns/colour enrichment associated with stereotyped T/NT male behaviour. We report colour-behaviour interactions localised in specific areas of the body and face for two colour morphs illustrating a more nuanced view of social behaviour and pigmentation. Since behavioural and morphological variation are key drivers of selection in the East African Great Rift Lakes, we surmise our data may be translatable to other cichlid lineages and underline the importance of trait covariance in sexual selection and male competition. 
    more » « less
  2. Abstract Male lizards often display multiple pigment‐based and structural colour signals which may reflect various quality traits (e.g. performance, parasitism), with testosterone (T) often mediating these relationships. Furthermore, environmental conditions can explain colour signal variation by affecting processes such as signal efficacy, thermoregulation and camouflage. The relationships between colour signals, male quality traits and environmental factors have often been analysed in isolation, but simultaneous analyses are rare. Thus, the response of multiple colour signals to variation in all these factors in an integrative analysis remains to be investigated.Here, we investigated how multiple colour signals relate to their information content, examined the role of T as a potential mediator of these relationships and how environmental factors explain colour signal variation.We performed an integrative study to examine the covariation between three colour signals (melanin‐based black, carotenoid‐based yellow–orange and structural UV), physiological performance, parasitism, T levels and environmental factors (microclimate, forest cover) in male common lizardsZootoca viviparafrom 13 populations.We found that the three colour signals conveyed information on different aspects of male condition, supporting a multiple message hypothesis. T influenced only parasitism, suggesting that T does not directly mediate the relationships between colour signals and their information content. Moreover, colour signals became more saturated in forested habitats, suggesting an adaptation to degraded light conditions, and became generally brighter in mesic conditions, in contradiction with the thermal melanism hypothesis.We show that distinct individual quality traits and environmental factors simultaneously explain variations of multiple colour signals with different production modes. Our study therefore highlights the complexity of colour signal evolution, involving various sets of selective pressures acting at the same time, but in different ways depending on colour production mechanism. 
    more » « less
  3. Abstract Understanding the factors that govern variation in genetic structure across species is key to the study of speciation and population genetics. Genetic structure has been linked to several aspects of life history, such as foraging strategy, habitat association, migration distance, and dispersal ability, all of which might influence dispersal and gene flow. Comparative studies of population genetic data from species with differing life histories provide opportunities to tease apart the role of dispersal in shaping gene flow and population genetic structure. Here, we examine population genetic data from sets of bird species specialized on a series of Amazonian habitat types hypothesized to filter for species with dramatically different dispersal abilities: stable upland forest, dynamic floodplain forest, and highly dynamic riverine islands. Using genome‐wide markers, we show that habitat type has a significant effect on population genetic structure, with species in upland forest, floodplain forest, and riverine islands exhibiting progressively lower levels of structure. Although morphological traits used as proxies for individual‐level dispersal ability did not explain this pattern, population genetic measures of gene flow are elevated in species from more dynamic riverine habitats. Our results suggest that the habitat in which a species occurs drives the degree of population genetic structuring via its impact on long‐term fluctuations in levels of gene flow, with species in highly dynamic habitats having particularly elevated gene flow. These differences in genetic variation across taxa specialized in distinct habitats may lead to disparate responses to environmental change or habitat‐specific diversification dynamics over evolutionary time scales. 
    more » « less
  4. Abstract Phenotypic differentiation among animal populations is common, yet few studies have simultaneously examined the adaptive and neutral mechanisms behind it. Such evolutionary processes become more relevant in species with complex behaviours that undergo global and local selective pressures throughout their geographical range. Here we measured and compared morphological and acoustic variation across the distribution range of a Neotropical gladiator tree frog that shows elaborate reproduction (territoriality, complex courtship and female choice). We then incorporated molecular and landscape data to examine the roles of sexual selection, genetic drift and acoustic adaptation to the environment in call differentiation, i.e. the acoustic adaptation hypothesis (AAH). We found that calls varied more than morphology among populations, but differences in calls or morphological traits were not explained by genetic differentiation. We found no evidence for the AAH, but a significant relationship in the opposite direction regarding call frequencies suggests an indirect role of sexual selection. Differentiation on call traits that are associated with individual discrimination and/or female attraction also corroborated an important role of sexual selection. We show that multitrait and multimechanism approaches can elucidate intricate processes leading to phenotypic variation among individuals and populations. We emphasize that studies of species with complex reproductive behaviours across their range may provide insights into different selective pressures leading to phenotypic differentiation. 
    more » « less
  5. Abstract Human activity drastically transforms landscapes, generating novel habitats to which species must adaptively respond. Consequently, urbanization is increasingly recognized as a driver of phenotypic change. The structural environment of urban habitats presents a replicated natural experiment to examine trait–environment relationships and phenotypic variation related to locomotion. We use geometric morphometrics to examine claw morphology of five species of Anolis lizards in urban and forest habitats. We find that urban lizards undergo a shift in claw shape in the same direction but varying magnitude across species. Urban claws are overall taller, less curved, less pointed and shorter in length than those of forest lizards. These differences may enable more effective attachment or reduce interference with toepad function on smooth anthropogenic substrates. We also find an increase in shape disparity, a measurement of variation, in urban populations, suggesting relaxed selection or niche expansion rather than directional selection. This study expands our understanding of the relatively understudied trait of claw morphology and adds to a growing number of studies demonstrating phenotypic changes in urban lizards. The consistency in the direction of the shape changes we observed supports the intriguing possibility that urban environments may lead to predictable convergent adaptive change. 
    more » « less