skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A lizard is never late: Squamate genomics as a recent catalyst for understanding sex chromosome and microchromosome evolution
Abstract In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the “genomics age” was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012 and 2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.  more » « less
Award ID(s):
2151318
PAR ID:
10445594
Author(s) / Creator(s):
; ; ;
Editor(s):
Blackmon, Heath
Date Published:
Journal Name:
Journal of Heredity
Volume:
114
Issue:
5
ISSN:
0022-1503
Page Range / eLocation ID:
445 to 458
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Genomic resources across squamate reptiles (lizards and snakes) have lagged behind other vertebrate systems and high-quality reference genomes remain scarce. Of the 23 chromosome-scale reference genomes across the order, only 12 of the ~60 squamate families are represented. Within geckos (infraorder Gekkota), a species-rich clade of lizards, chromosome-level genomes are exceptionally sparse representing only two of the seven extant families. Using the latest advances in genome sequencing and assembly methods, we generated one of the highest-quality squamate genomes to date for the leopard gecko, Eublepharis macularius (Eublepharidae). We compared this assembly to the previous, short-read only, E. macularius reference genome published in 2016 and examined potential factors within the assembly influencing contiguity of genome assemblies using PacBio HiFi data. Briefly, the read N50 of the PacBio HiFi reads generated for this study was equal to the contig N50 of the previous E. macularius reference genome at 20.4 kilobases. The HiFi reads were assembled into a total of 132 contigs, which was further scaffolded using HiC data into 75 total sequences representing all 19 chromosomes. We identified 9 of the 19 chromosomal scaffolds were assembled as a near-single contig, whereas the other 10 chromosomes were each scaffolded together from multiple contigs. We qualitatively identified that the percent repeat content within a chromosome broadly affects its assembly contiguity prior to scaffolding. This genome assembly signifies a new age for squamate genomics where high-quality reference genomes rivaling some of the best vertebrate genome assemblies can be generated for a fraction of previous cost estimates. This new E. macularius reference assembly is available on NCBI at JAOPLA010000000. 
    more » « less
  2. Abstract Broad paradigms of vertebrate genomic repeat element evolution have been largely shaped by analyses of mammalian and avian genomes. Here, based on analyses of genomes sequenced from over 60 squamate reptiles (lizards and snakes), we show that patterns of genomic repeat landscape evolution in squamates challenge such paradigms. Despite low variance in genome size, squamate genomes exhibit surprisingly high variation among species in abundance (ca. 25–73% of the genome) and composition of identifiable repeat elements. We also demonstrate that snake genomes have experienced microsatellite seeding by transposable elements at a scale unparalleled among eukaryotes, leading to some snake genomes containing the highest microsatellite content of any known eukaryote. Our analyses of transposable element evolution across squamates also suggest that lineage-specific variation in mechanisms of transposable element activity and silencing, rather than variation in species-specific demography, may play a dominant role in driving variation in repeat element landscapes across squamate phylogeny. 
    more » « less
  3. Abstract The slender anole, Anolis apletophallus, is a small arboreal lizard of the rainforest understory of central and eastern Panama. This species has been the subject of numerous ecological and evolutionary studies over the past 60 years as a result of attributes that make it especially amenable to field and laboratory science. Slender anoles are highly abundant, short-lived (nearly 100% annual turnover), easy to manipulate in both the lab and field, and are ubiquitous in the forests surrounding the Smithsonian Tropical Research Institute in Panama, where researchers have access to high-quality laboratory facilities. Here, we present a high-quality genome for the slender anole, which is an important new resource for studying this model species. We assembled and annotated the slender anole genome by combining 3 technologies: Oxford Nanopore, 10× Genomics Linked-Reads, and Dovetail Omni-C. We compared this genome with the recently published brown anole (Anolis sagrei) and the canonical green anole (Anolis carolinensis) genomes. Our genome is the first assembled for an Anolis lizard from mainland Central or South America, the regions that host the majority of diversity in the genus. This new reference genome is one of the most complete genomes of any anole assembled to date and should facilitate deeper studies of slender anole evolution, as well as broader scale comparative genomic studies of both mainland and island species. In turn, such studies will further our understanding of the well-known adaptive radiation of Anolis lizards. 
    more » « less
  4. Abstract The symbiosis between clownfish and giant tropical sea anemones (Order Actiniaria) is one of the most iconic on the planet. Distributed on tropical reefs, 28 species of clownfishes form obligate mutualistic relationships with 10 nominal species of venomous sea anemones. Our understanding of the symbiosis is limited by the fact that most research has been focused on the clownfishes. Chromosome scale reference genomes are available for all clownfish species, yet there are no published reference genomes for the host sea anemones. Recent studies have shown that the clownfish-hosting sea anemones belong to three distinct clades of sea anemones that have evolved symbiosis with clownfishes independently. Here we present the first high quality long read assemblies for three species of clownfish hosting sea anemones belonging to each of these clades:Entacmaea quadricolor, Stichodactyla haddoni, Radianthus doreensis. PacBio HiFi sequencing yielded 1,597,562, 3,101,773, and 1,918,148 million reads forE. quadricolor, S. haddoni, andR. doreensis, respectively. All three assemblies were highly contiguous and complete with N50 values above 4Mb and BUSCO completeness above 95% on the Metazoa dataset. Genome structural annotation with BRAKER3 predicted 20,454, 18,948 and 17,056 protein coding genes inE. quadricolor, S. haddoniandR. doreeensisgenome, respectively. These new resources will form the basis of comparative genomic analyses that will allow us to deepen our understanding of this mutualism from the host perspective. SignificanceChromosome-scale genomes are available for all 28 clownfish species yet there are no high-quality reference genomes published for the clownfish-hosting sea anemones. The lack of genomic resources impedes our ability to understand evolution of this iconic symbiosis from the host perspective. The clownfish-hosting sea anemones belong to three clades of sea anemones that have evolved mutualism with clownfish independently. Here we assembled the first high-quality long-read genomes for three species of host sea anemones each belonging to a different host clade:Entacmaea quadricolor, Stichodactyla haddoni, Radianthus doreensis. These resources will enable in depth comparative genomics of clownfish-hosting sea anemones providing a critical perspective for understanding how the symbiosis has evolved. Finally, these reference genomes present a significant increase in the number of high-quality long-read genome assemblies for sea anemones (11 currently published) and double the number of high-quality reference genomes for the sea anemone superfamily Actinoidea. 
    more » « less
  5. Abstract Rapid technological improvements are democratizing access to high quality, chromosome-scale genome assemblies. No longer the domain of only the most highly studied model organisms, now non-traditional and emerging model species can be genome-enabled using a combination of sequencing technologies and assembly software. Consequently, old ideas built on sparse sampling across the tree of life have recently been amended in the face of genomic data drawn from a growing number of high-quality reference genomes. Arguably the most valuable are those long-studied species for which much is already known about their biology; what many term emerging model species. Here, we report a highly complete chromosome-scale genome assembly for the brown anole,Anolis sagrei– a lizard species widely studied across a variety of disciplines and for which a high-quality reference genome was long overdue. This assembly exceeds the vast majority of existing reptile and snake genomes in contiguity (N50 = 253.6 Mb) and annotation completeness. Through the analysis of this genome and population resequence data, we examine the history of repetitive element accumulation, identify the X chromosome, and propose a hypothesis for the evolutionary history of fusions between autosomes and the X that led to the sex chromosomes ofA. sagrei. 
    more » « less