Abstract We introduce a new framework called Machine Learning (ML) based Auroral Ionospheric electrodynamics Model (ML‐AIM). ML‐AIM solves a current continuity equation by utilizing the ML model of Field Aligned Currents of Kunduri et al. (2020,https://doi.org/10.1029/2020JA027908), the FAC‐derived auroral conductance model of Robinson et al. (2020,https://doi.org/10.1029/2020JA028008), and the solar irradiance conductance model of Moen and Brekke (1993,https://doi.org/10.1029/92gl02109). The ML‐AIM inputs are 60‐min time histories of solar wind plasma, interplanetary magnetic fields (IMF), and geomagnetic indices, and its outputs are ionospheric electric potential, electric fields, Pedersen/Hall currents, and Joule Heating. We conduct two ML‐AIM simulations for a weak geomagnetic activity interval on 14 May 2013 and a geomagnetic storm on 7–8 September 2017. ML‐AIM produces physically accurate ionospheric potential patterns such as the two‐cell convection pattern and the enhancement of electric potentials during active times. The cross polar cap potentials (ΦPC) from ML‐AIM, the Weimer (2005,https://doi.org/10.1029/2004ja010884) model, and the Super Dual Auroral Radar Network (SuperDARN) data‐assimilated potentials, are compared to the ones from 3204 polar crossings of the Defense Meteorological Satellite Program F17 satellite, showing better performance of ML‐AIM than others. ML‐AIM is unique and innovative because it predicts ionospheric responses to the time‐varying solar wind and geomagnetic conditions, while the other traditional empirical models like Weimer (2005,https://doi.org/10.1029/2004ja010884) designed to provide a quasi‐static ionospheric condition under quasi‐steady solar wind/IMF conditions. Plans are underway to improve ML‐AIM performance by including a fully ML network of models of aurora precipitation and ionospheric conductance, targeting its characterization of geomagnetically active times.
more »
« less
Modeling Stable Auroral Red (SAR) Arcs at Geomagnetic Conjugate Points: Implications for Hemispheric Asymmetries in Heat Fluxes
Abstract Stable auroral red (SAR) arcs provide opportunities to study inner magnetosphere‐ionosphere coupling at midlatitudes. An imaging system at a single‐site obtains evidence of seasonal variations in SAR arc brightness and occurrence rates using events widely separated in time, as observed during different geomagnetic storms. The first SAR arc observed using two all‐sky imagers at geomagnetic conjugate points described seasonal effects at the same time for the same storm (Martinis, Mendillo, et al., 2019,https://doi.org/10.1029/2018JA026018). Here we report on modeling studies that enable specification of the roles of local “receptor conditions” in each hemisphere, plus the division of driving energy from a single source region into conjugate ionospheres. The geomagnetic storm of 1 June 2013 produced SAR arcs observed by conjugate all‐sky imagers yielding 73 Rayleighs (R) at Millstone Hill (L= 2.64) in the summer hemisphere, and 300 R during local winter at Rothera (L= 2.92). With incoherent scatter radar data not available to specify input conditions, we offer a new simulation approach using non‐incoherent scatter radar observations to specify local receptor conditions. These include a combination of semiempirical models (International Reference Ionosphere and MSIS) calibrated by local ionosonde and DMSP satellite data. We find that the driving mechanism (heat conduction entering the ionosphere) is not an equal partition of energy from the ring current source region, but one that is weaker in the summer hemisphere where the local receptor conditions are poised to produce fainter SAR arcs. The relationship between SAR arcs and recently discovered STEVE events are discussed and require further study.
more »
« less
- Award ID(s):
- 1659304
- PAR ID:
- 10445707
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 124
- Issue:
- 7
- ISSN:
- 2169-9380
- Page Range / eLocation ID:
- p. 6330-6342
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract On September 28, 2017 citizen scientist observations at Alberta, Canada (51°N, 113° W) detected aurora and a thin east‐west purplish arc, known as strong thermal emission velocity enhancement (STEVE) that lasted less than 20 min. All‐sky imagers at subauroral latitudes measured stable auroral red (SAR) arcs during the entire night. The imager at Bridger, MT (45.3°N, 108.9°W) also measured a STEVE. The overlapping geometry allowed to determine that the height of STEVE was 225–275 km. STEVE is brighter in the 630.0 nm images in the West and almost merges with the SAR arc in the East. A DMSP satellite pass in the southern hemisphere was at the conjugate location of the Bridger imager during the STEVE observation. When mapped into the northern hemisphere intense subauroral ion drift and subauroral polarization streams were detected associated with the two optical signatures measured in 630.0 nm.more » « less
-
Abstract In Vadas et al. (2024,https://doi.org/10.1029/2024ja032521), we modeled the atmospheric gravity waves (GWs) during 11–14 January 2016 using the HIAMCM, and found that the polar vortex jet generates medium to large‐scale, higher‐order GWs in the thermosphere. In this paper, we model the traveling ionospheric disturbances (TIDs) generated by these GWs using the HIAMCM‐SAMI3 and compare with ionospheric observations from ground‐based Global Navigation Satellite System (GNSS) receivers, Incoherent Scatter Radars (ISR) and the Super Dual Auroral Radar Network (SuperDARN). We find that medium to large‐scale TIDs are generated worldwide by the higher‐order GWs from this event. Many of the TIDs over Europe and Asia have concentric ring/arc‐like structure, and most of those over North/South America have planar wave structure and occur during the daytime. Those over North/South America propagate southward and are generated by higher‐order GWs from Europe/Asia which propagate over the Arctic. These latter TIDs can be misidentified as arising from geomagnetic forcing. We find that the higher‐order GWs that propagate to Africa and Brazil from Europe may aid in the formation of equatorial plasma bubbles (EPBs) there. We find that the simulated GWs, TIDs and EPBs agree with EISCAT, PFISR, GNSS, and SuperDARN measurements. We find that the higher‐order GWs are concentrated at N at 200 km, in agreement with GOCE and CHAMP data. Thus the polar vortex jet is important for generating TIDs in the northern winter ionosphere via multi‐step vertical coupling through GWs.more » « less
-
Abstract The strongest geomagnetic storm in the preceding two decades occurred in May 2024. Over these years, ground‐based observational capabilities have been significantly enhanced to monitor the ionospheric weather. Notably, the newly established Sanya incoherent scatter radar (SYISR) (Yue, Wan, Ning, & Jin, 2022,https://doi.org/10.1038/s41550‐022‐01684‐1), one of the critical infrastructures of the Chinese “Meridian Project,” provides multiple parameter measurements in the upper atmosphere at low latitudes over Asian longitudies. Unique ionospheric changes on superstorm day 11 May were first recorded by the SYISR experiments and the geostationary satellite (GEO) total electron content (TEC) network over the Asian sector. The electron density or TEC displayed wavelike structures rather than a regular diurnal pattern. Surprisingly, two humps, a common feature in the daytime equatorial ionization anomaly structure, disappeared. The SYISR observations revealed that multiple wind surges accompanied the downward phase propagation caused by atmospheric gravity waves (AGWs) originating from auroral zones. Meanwhile, strong upward and large downward drifts were respectively observed in the daytime and around sunset. The Thermosphere‐Ionosphere Electrodynamics Global Circulation Model (TIEGCM) simulations demonstrated that abnormal ionospheric changes were attributed to meridional wind disturbances associated with AGWs and recurrent penetration electric fields corresponding to largerBzsouthward excursions and disturbance dynamo. The complicated interplay between AGWs and disturbance electric fields contributed to this unique ionospheric variation.more » « less
-
Abstract Geomagnetic storms transfer massive amounts of energy from the sun to geospace. Some of that energy is dissipated in the ionosphere as energetic particles precipitate and transfer their energy to the atmosphere, creating the aurora. We used the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mosaic of all‐sky‐imagers across Canada and Alaska to measure the amount of energy flux deposited into the ionosphere via auroral precipitation during the 2013 March 17 storm. We determined the time‐dependent percent of the total energy flux that is contributed by meso‐scale (<500 km wide) auroral features, discovering they contribute up to 80% during the sudden storm commencement (SSC) and >∼40% throughout the main phase, indicating meso‐scale dynamics are important aspects of a geomagnetic storm. We found that average conductance was higher north of 65° until SYM‐H reached −40 nT. We also found that the median conductance was higher in the post‐midnight sector during the SSC, though localized conductance peaks (sometimes >75 mho) were much higher in the pre‐midnight sector throughout. We related the post‐midnight/pre‐dawn conductance to other recent findings regarding meso‐scale dynamics in the literature. We found sharp conductance peaks and gradients in both time and space related to meso‐scale aurora. Data processing included a new moonlight removal algorithm and cross‐instrument calibration with a meridian scanning photometer and a standard photometer. We compared ASI results to Poker Flat Incoherent Scatter Radar (PFISR) observations, finding energy flux, mean energy, and Hall conductance were highly correlated, moderately correlated, and highly correlated, respectively.more » « less
An official website of the United States government
