skip to main content


Title: Imaging of the Daytime Ionospheric Equatorial Arcs With Extreme and Far Ultraviolet Airglow
Abstract

We present the first global images of the daytime ionosphere equatorial arcs as manifested in the 83.4‐nm airglow. These images were collected by the Limb‐Imaging Ionospheric and Thermospheric Extreme‐Ultraviolet Spectrograph that commenced operations on the International Space Station in early 2017. We compare these to simultaneous images of the ionospheric radiative recombination airglow at 135.6 nm measured between 250‐ and 350‐km tangent altitudes, where the emission is generated primarily by radiative recombination of ionospheric plasma. We find that these signatures of the dense crests of the Equatorial Ionization Anomaly, their symmetry, and daily variability at 1300–1600 LT over 1–6 April 2017 do not show any strong periodicity during this time. These results are also important to the joint interpretation of these two correlated extreme and far ultraviolet emission features measured under solar minimum conditions and the evaluation of absorption and radiative transfer effects that affect these emissions differently.

 
more » « less
NSF-PAR ID:
10445710
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
124
Issue:
7
ISSN:
2169-9380
Page Range / eLocation ID:
p. 6074-6086
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Prior investigations have attempted to characterize the longitudinal variability of the column number density ratio of atomic oxygen to molecular nitrogen (O/N2) in the context of non‐migrating tides. The retrieval of thermosphericO/N2from far ultra‐violet (FUV) emissions assumes production is due to photoelectron impact excitation on O and N2. Consequently, efforts to characterize the tidal variability inO/N2have been limited by ionospheric contamination from O+ + e radiative recombination at afternoon local times (LT) around the equatorial ionization anomaly. The retrieval ofO/N2from FUV observations by the Ionospheric Connection Explorer (ICON) provides an opportunity to address this limitation. In this work, we derive modifiedO/N2datasets to delineate the response of thermospheric composition to non‐migrating tides as a function of LT in the absence of ionospheric contamination. We assess estimates of the ionospheric contribution to 135.6 nm emission intensities based on either Global Ionospheric Specification (GIS) electron density, International Reference Ionosphere (IRI) model output, or observations from the Extreme Ultra‐Violet imager (EUV) onboard ICON during March and September equinox conditions in 2020. Our approach accounts for any biases between the ionospheric and airglow datasets. We found that the ICON‐FUV data set, corrected for ionospheric contamination based on GIS, uncovered a previously obscured diurnal eastward wavenumber 2 tide in a longitudinal wavenumber 3 pattern at March equinox in 2020. This finding demonstrates not only the necessity of correcting for ionospheric contamination of the FUV signals but also the utility of using GIS for the correction.

     
    more » « less
  2. Abstract

    The Global‐scale Observations of the Limb and Disk (GOLD) mission data contain significant quantitative information about the aurora on a global scale. Here we present techniques for quantifying such information, including the temporal development of the structure within the auroral oval using the GOLD images. These techniques are applied to auroral observations in the GOLD data, in particular showing an example of how the longitudinal structure within the aurora varies over the course of six consecutive days with differing levels of geomagnetic activity. A simple model of the solar‐induced airglow is presented that is used to remove the sunlight contamination from the dayside auroral observations. Comparisons to ground‐based auroral imaging are used for the overall auroral context and to make estimates of the proportionality between the intensities of the green line (557.7 nm) emission in the visible and the 135.6 nm emissions in the GOLD data. These observations are consistent with the intensity of the 135.6 nm auroral emission being on the same order as the intensity of the 557.7 nm auroral emission. They were both found to be around 1 kR for a stable auroral arc on a day with low geomagnetic activity (3 November 2018) and around 10 kR for an active auroral display on a day with higher levels of geomagnetic activity (5 November 2018). This could have important implications for making direct comparisons between space‐based ultraviolet auroral imaging and ground‐based visible‐light auroral imaging and the total energy input estimates that are derived from them.

     
    more » « less
  3. Abstract

    Previous studies have shown that solar flares can significantly affect Earth's ionosphere and induce ion upflow with a magnitude of ∼110 m/s in the topside ionosphere (∼570 km) at Millstone Hill (42.61°N, 71.48°W). We use simulations from the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) and observations from Incoherent Scatter Radar (ISR) at Millstone Hill to reveal the mechanism of ionospheric ion upflow near the X9.3 flare peak (07:16 LT) on 6 September 2017. The ISR observed ionospheric upflow was captured by the TIEGCM in both magnitude and morphology. The term analysis of the F‐region ion continuity equation during the solar flare shows that the ambipolar diffusion enhancement is the main driver for the upflow in the topside ionosphere, while ion drifts caused by electric fields and neutral winds play a secondary role. Further decomposition of the ambipolar diffusive velocity illustrates that flare‐induced changes in the vertical plasma density gradient is responsible for ion upflow. The changes in the vertical plasma density gradient are mainly due to solar extreme ultraviolet (EUV, 15.5–79.8 nm) induced electron density and temperature enhancements at the F2‐region ionosphere with a minor and indirectly contribution from X‐ray (0–15.5 nm) and ultraviolet (UV, 79.8–102.7 nm).

     
    more » « less
  4. Abstract

    While low and high‐latitude ionospheric scintillation have been extensively reported, significantly less information is available about the properties of and conditions leading to mid‐latitude scintillations. Here, we report and discuss scintillation observations made in the Southern United States (UT Dallas, 32.99°N, 96.76°W, 43.2°N dip latitude) on June 1st, 2013. The measurements were made by a specialized dual‐frequency GPS‐based scintillation monitor which allowed us to determine main properties of this mid‐latitude scintillation event. Additionally, simultaneous airglow observations and ionospheric total electron content (TEC) maps provided insight on the conditions leading to observed scintillations. Moderate amplitude scintillations (S4>∼0.4) occurred in both L1 and L2C signals, and severe (S4 > ∼0.8) events occurred in L2C signals at low (<30°) elevation angles. Phase scintillation accompanied amplitude fadings, with maximum σϕvalues exceeding 0.5 radians in L2C. We also show that the observed phase scintillation magnitudes increased with amplitude scintillation severity. Decorrelation times were mostly between 0.25 and 1.25 s, with mean value around 0.65 s for both L1 and L2C. Frequency scaling of S4matched fairly well the predictions of weak scattering theory but held for observations of moderate and strong amplitude scintillation as well. Scintillation occurred during the main phase of a modest magnetic storm that, nevertheless, prompted an extreme equatorward movement of the mid‐latitude trough and large background TEC enhancements over the US. Scintillations, however, occurred within TEC and airglow depletions observed over Texas. Finally, scintillation properties including severity and rapidity, and associated TEC signatures are comparable to those associated with equatorial spread F.

     
    more » « less
  5. Abstract

    The Event Horizon Telescope (EHT) has produced images of two supermassive black holes, Messier 87* (M 87*) and Sagittarius A* (Sgr A*). The EHT collaboration used these images to indirectly constrain black hole parameters by calibrating measurements of the sky-plane emission morphology to images of general relativistic magnetohydrodynamic (GRMHD) simulations. Here, we develop a model for directly constraining the black hole mass, spin, and inclination through signatures of lensing, redshift, and frame dragging, while simultaneously marginalizing over the unknown accretion and emission properties. By assuming optically thin, axisymmetric, equatorial emission near the black hole, our model gains orders of magnitude in speed over similar approaches that require radiative transfer. Using 2017 EHT M 87* baseline coverage, we use fits of the model to itself to show that the data are insufficient to demonstrate existence of the photon ring. We then survey time-averaged GRMHD simulations fitting EHT-like data, and find that our model is best-suited to fitting magnetically arrested disks, which are the favored class of simulations for both M 87* and Sgr A*. For these simulations, the best-fit model parameters are within ∼10% of the true mass and within ∼10° for inclination. With 2017 EHT coverage and 1% fractional uncertainty on amplitudes, spin is unconstrained. Accurate inference of spin axis position angle depends strongly on spin and electron temperature. Our results show the promise of directly constraining black hole spacetimes with interferometric data, but they also show that nearly identical images permit large differences in black hole properties, highlighting degeneracies between the plasma properties, spacetime, and, most crucially, the unknown emission geometry when studying lensed accretion flow images at a single frequency.

     
    more » « less