skip to main content

Title: Comparison of Antarctic and Arctic Single‐Layer Stratiform Mixed‐Phase Cloud Properties Using Ground‐Based Remote Sensing Measurements

Ground‐based remote sensing measurements from the Atmospheric Radiation Measurement Program (ARM) West Antarctic Radiation Experiment (AWARE) campaign at the McMurdo station and the ARM North Slope of Alaska (NSA) Utqiaġvik site are used to retrieve and analyze single‐layer stratiform mixed‐phase cloud macrophysical and microphysical properties for these different polar environments. Single‐layer stratiform mixed‐phase clouds have annual frequencies of occurrence of ~14.7% at Utqiaġvik and ~7.3% at McMurdo, with the highest occurrences in early autumn. Compared to Utqiaġvik, stratiform mixed‐phase clouds at McMurdo have overall higher and colder cloud‐tops, thicker ice layer depth, thinner liquid‐dominated layer depth, and smaller liquid water path. These properties show clear seasonal variations. Supercooled liquid fraction at McMurdo is greater than at Utqiaġvik because, at a given temperature, McMurdo clouds have comparable liquid water paths but smaller ice water paths. Analyses of retrieved cloud microphysical properties show that compared to Utqiaġvik, stratiform mixed‐phase clouds at McMurdo have greater liquid droplet number concentration, smaller layer‐mean effective radius, and smaller ice water content and ice number concentration at a given cloud‐top temperature. These relationships may be related to different aerosol loading and chemical composition, and environment dynamics. Results presented in this study can be used as observational constraints for model representations of stratiform mixed‐phase clouds.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Page Range / eLocation ID:
p. 10186-10204
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study compares macrophysical and microphysical properties of single‐layered, liquid‐dominant MBL clouds from the Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS) (above 60°S) and the ARM East North Atlantic (ENA) site during the Aerosol and Cloud Experiments in Eastern North Atlantic (ACE‐ENA) field campaign. A total of 1,136 (16.5% of clouds) and 6,034 5‐min cloud samples are selected from MARCUS and ARM ENA in this study. MARCUS clouds have higher cloud‐top heights, thicker cloud layers, larger liquid water path, and colder cloud temperatures than ENA. Thinner, warmer MBL clouds at ENA can contain higher layer‐mean liquid water content due to higher cloud and ocean surface temperatures along with greater precipitable water vapor (PWV). MARCUS has a higher drizzle frequency rate (71.8%) than ENA (45.1%). Retrieved cloud and drizzle microphysical properties from each field campaign show key differences. MARCUS clouds feature smaller cloud droplets, whereas ENA clouds have larger cloud droplets, especially at the upper region of the cloud. From cloud top to cloud base, drizzle drop sizes increase while number concentrations decrease. Drizzle drop radius and number concentration decrease from cloud base to drizzle base due to net evaporation, and MARCUS' lower specific humidity leads to a higher drizzle base than ENA. The broader surface pressure and lower tropospheric stability (LTS) distributions during MARCUS have demonstrated that there are different synoptic patterns for selected cases during MARCUS with less PWV, while ENA is dominated by high pressure systems with nearly doubled PWV.

    more » « less
  2. null (Ed.)
    Abstract. The aerosol indirect effect on cloud microphysical and radiative propertiesis one of the largest uncertainties in climate simulations. In order toinvestigate the aerosol–cloud interactions, a total of 16 low-level stratuscloud cases under daytime coupled boundary-layer conditions are selectedover the southern Great Plains (SGP) region of the United States. Thephysicochemical properties of aerosols and their impacts on cloudmicrophysical properties are examined using data collected from theDepartment of Energy Atmospheric Radiation Measurement (ARM) facility at the SGP site. The aerosol–cloud interaction index (ACIr) is used to quantify the aerosol impacts with respect to cloud-droplet effective radius. The mean value of ACIr calculated from all selected samples is0.145±0.05 and ranges from 0.09 to 0.24 at a range of cloudliquid water paths (LWPs; LWP=20–300 g m−2). The magnitude of ACIr decreases with an increasing LWP, which suggests a diminished cloud microphysical response to aerosol loading, presumably due to enhanced condensational growth processes and enlarged particle sizes. The impact of aerosols with different light-absorbing abilities on the sensitivity of cloud microphysical responses is also investigated. In the presence of weak light-absorbing aerosols, the low-level clouds feature a higher number concentration of cloud condensation nuclei (NCCN) and smaller effective radii (re), while the opposite is true for strong light-absorbing aerosols. Furthermore, the mean activation ratio of aerosols to CCN (NCCN∕Na) for weakly (strongly) absorbing aerosols is 0.54 (0.45), owing to the aerosol microphysical effects, particularly the different aerosol compositions inferred by their absorptive properties. In terms of the sensitivity of cloud-droplet number concentration (Nd) to NCCN, the fraction of CCN that converted to cloud droplets (Nd∕NCCN) for the weakly (strongly) absorptive regime is 0.69 (0.54). The measured ACIr values in the weakly absorptive regime arerelatively higher, indicating that clouds have greater microphysicalresponses to aerosols, owing to the favorable thermodynamic condition. Thereduced ACIr values in the strongly absorptive regime are due to the cloud-layer heating effect induced by strong light-absorbing aerosols. Consequently, we expect larger shortwave radiative cooling effects from clouds in the weakly absorptive regime than those in the strongly absorptive regime. 
    more » « less
  3. Abstract On 7 February 2020, precipitation within the comma-head region of an extratropical cyclone was sampled remotely and in situ by two research aircraft, providing a vertical cross section of microphysical observations and fine-scale radar measurements. The sampled region was stratified vertically by distinct temperature layers and horizontally into a stratiform region on the west side, and a region of elevated convection on the east side. In the stratiform region, precipitation formed near cloud top as side-plane, polycrystalline, and platelike particles. These habits occurred through cloud depth, implying that the cloud-top region was the primary source of particles. Almost no supercooled water was present. The ice water content within the stratiform region showed an overall increase with depth between the aircraft flight levels, while the total number concentration slightly decreased, consistent with growth by vapor deposition and aggregation. In the convective region, new particle habits were observed within each temperature-defined layer along with detectable amounts of supercooled water, implying that ice particle formation occurred in several layers. Total number concentration decreased from cloud top to the −8°C level, consistent with particle aggregation. At temperatures > −8°C, ice particle concentrations in some regions increased to >100 L −1 , suggesting secondary ice production occurred at lower altitudes. WSR-88D reflectivity composites during the sampling period showed a weak, loosely organized banded feature. The band, evident on earlier flight legs, was consistent with enhanced vertical motion associated with frontogenesis, and at least partial melting of ice particles near the surface. A conceptual model of precipitation growth processes within the comma head is presented. Significance Statement Snowstorms over the northeast United States have major impacts on travel, power availability, and commerce. The processes by which snow forms in winter storms over this region are complex and their snowfall totals are hard to forecast accurately because of a poor understanding of the microphysical processes within the clouds composing the storms. This paper presents a case study from the NASA IMPACTS field campaign that involved two aircraft sampling the storm simultaneously with radars, and probes that measure the microphysical properties within the storm. The paper examines how variations in stability and frontal structure influence the microphysical evolution of ice particles as they fall from cloud top to the surface within the storm. 
    more » « less
  4. Abstract. Regions with high ice water content (HIWC), composed of mainly small ice crystals, frequently occur over convective clouds in the tropics. Such regions can have median mass diameters (MMDs) <300 µm and equivalent radar reflectivities <20 dBZ. To explore formation mechanisms for these HIWCs, high-resolution simulations of tropical convective clouds observed on 26 May 2015 during the High Altitude Ice Crystals – High Ice Water Content (HAIC-HIWC) international field campaign based out of Cayenne, French Guiana, are conducted using the Weather Research and Forecasting (WRF) model with four different bulk microphysics schemes: the WRF single‐moment 6‐class microphysics scheme (WSM6), the Morrison scheme, and the Predicted Particle Properties (P3) scheme with one- and two-ice options. The simulations are evaluated against data from airborne radar and multiple cloud microphysics probes installed on the French Falcon 20 and Canadian National Research Council (NRC) Convair 580 sampling clouds at different heights. WRF simulations with different microphysics schemes generally reproduce the vertical profiles of temperature, dew-point temperature, and winds during this event compared with radiosonde data, and the coverage and evolution of this tropical convective system compared to satellite retrievals. All of the simulations overestimate the intensity and spatial extent of radar reflectivity by over 30 % above the melting layer compared to the airborne X-band radar reflectivity data. They also miss the peak of the observed ice number distribution function for 0.1 more » « less
  5. Abstract

    Single‐ and multi‐layer clouds are commonly observed over the Southern Ocean in varying synoptic settings, yet few studies have characterized and contrasted their properties. This study provides a statistical analysis of the microphysical properties of single‐ and multi‐layer clouds using in‐situ observations acquired during the Southern Ocean Cloud‐Radiation Aerosol Transport Experimental Study. The relative frequencies of ice‐containing samples (i.e., mixed and ice phase) for multi‐layer clouds are 0.05–0.25 greater than for single‐layer clouds, depending on cloud layer height. In multi‐layer clouds, the lowest cloud layers have the highest ice‐containing sample frequencies, which decrease with increasing cloud layer height up to the third highest cloud layer. This suggests a prominent seeder‐feeder mechanism over the region. Ice nucleating particle (cloud condensation nuclei) concentrations are positively (negatively) correlated with ice‐containing sample frequencies in select cases. Differences in microphysical properties are observed for single‐ and multi‐layer clouds. Drop concentrations (size distributions) are greater (narrower) for single‐layer clouds compared with the lowest multi‐layer clouds. When differentiating cloud layers by top (single‐ and highest multi‐layer clouds) and non‐top layers (underlying multi‐layer clouds), total particle size distributions (including liquid and ice) are similarly broader for non‐top cloud layers. Additionally, drop concentrations in coupled environments are approximately double those in decoupled environments.

    more » « less